1
|
Liu X, Wickland DP, Lin Z, Liu Q, Dos Santos LB, Hudson KA, Hudson ME. Promoter deletion in the soybean Compact mutant leads to overexpression of a gene with homology to the C20-gibberellin 2-oxidase family. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5153-5165. [PMID: 37551820 DOI: 10.1093/jxb/erad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Height is a critical component of plant architecture, significantly affecting crop yield. The genetic basis of this trait in soybean remains unclear. In this study, we report the characterization of the Compact mutant of soybean, which has short internodes. The candidate gene was mapped to chromosome 17, and the interval containing the causative mutation was further delineated using biparental mapping. Whole-genome sequencing of the mutant revealed an 8.7 kb deletion in the promoter of the Glyma.17g145200 gene, which encodes a member of the class III gibberellin (GA) 2-oxidases. The mutation has a dominant effect, likely via increased expression of the GA 2-oxidase transcript observed in green tissue, as a result of the deletion in the promoter of Glyma.17g145200. We further demonstrate that levels of GA precursors are altered in the Compact mutant, supporting a role in GA metabolism, and that the mutant phenotype can be rescued with exogenous GA3. We also determined that overexpression of Glyma.17g145200 in Arabidopsis results in dwarfed plants. Thus, gain of promoter activity in the Compact mutant leads to a short internode phenotype in soybean through altered metabolism of gibberellin precursors. These results provide an example of how structural variation can control an important crop trait and a role for Glyma.17g145200 in soybean architecture, with potential implications for increasing crop yield.
Collapse
Affiliation(s)
- Xing Liu
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daniel P Wickland
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Zhicong Lin
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Quilin Liu
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Karen A Hudson
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, USA
| | - Matthew E Hudson
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois, Urbana, IL, USA
| |
Collapse
|
2
|
Schrager-Lavelle A, Gath NN, Devisetty UK, Carrera E, López-Díaz I, Blázquez MA, Maloof JN. The role of a class III gibberellin 2-oxidase in tomato internode elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:603-615. [PMID: 30394600 DOI: 10.1111/tpj.14145] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/20/2018] [Accepted: 10/25/2018] [Indexed: 05/27/2023]
Abstract
A network of environmental inputs and internal signaling controls plant growth, development and organ elongation. In particular, the growth-promoting hormone gibberellin (GA) has been shown to play a significant role in organ elongation. The use of tomato as a model organism to study elongation presents an opportunity to study the genetic control of internode-specific elongation in a eudicot species with a sympodial growth habit and substantial internodes that can and do respond to external stimuli. To investigate internode elongation, a mutant with an elongated hypocotyl and internodes but wild-type petioles was identified through a forward genetic screen. In addition to stem-specific elongation, this mutant, named tomato internode elongated -1 (tie-1) is more sensitive to the GA biosynthetic inhibitor paclobutrazol and has altered levels of intermediate and bioactive GAs compared with wild-type plants. The mutation responsible for the internode elongation phenotype was mapped to GA2oxidase 7, a class III GA 2-oxidase in the GA biosynthetic pathway, through a bulked segregant analysis and bioinformatic pipeline, and confirmed by transgenic complementation. Furthermore, bacterially expressed recombinant TIE protein was shown to have bona fide GA 2-oxidase activity. These results define a critical role for this gene in internode elongation and are significant because they further the understanding of the role of GA biosynthetic genes in organ-specific elongation.
Collapse
Affiliation(s)
- Amanda Schrager-Lavelle
- Department of Plant Biology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Natalie N Gath
- Department of Plant Biology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Upendra K Devisetty
- Department of Plant Biology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022, Valencia, Spain
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022, Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022, Valencia, Spain
| | - Julin N Maloof
- Department of Plant Biology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| |
Collapse
|
3
|
Verma V, Croley F, Sadanandom A. Fifty shades of SUMO: its role in immunity and at the fulcrum of the growth-defence balance. MOLECULAR PLANT PATHOLOGY 2018; 19:1537-1544. [PMID: 29024335 PMCID: PMC6637990 DOI: 10.1111/mpp.12625] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 05/10/2023]
Abstract
The sessile nature of plants requires them to cope with an ever-changing environment. Effective adaptive responses require sophisticated cellular mechanisms at the post-transcriptional and post-translational levels. Post-translational modification by small ubiquitin-like modifier (SUMO) proteins is emerging as a key player in these adaptive responses. SUMO conjugation can rapidly change the overall fate of target proteins by altering their stability or interaction with partner proteins or DNA. SUMOylation entails an enzyme cascade that leads to the activation, conjugation and ligation of SUMO to lysine residues of target proteins. In addition to their SUMO processing activities, SUMO proteases also possess de-conjugative activity capable of cleaving SUMO from target proteins, providing reversibility and buffering to the pathway. These proteases play critical roles in the maintenance of the SUMO machinery in equilibrium. We hypothesize that SUMO proteases provide the all-important substrate specificity within the SUMO system. Furthermore, we provide an overview of the role of SUMO in plant innate immunity. SUMOylation also overlaps with multiple growth-promoting and defence-related hormone signalling pathways, and hence is pivotal for the maintenance of the growth-defence balance. This review aims to highlight the intricate molecular mechanisms utilized by SUMO to regulate plant defence and to stabilize the growth-defence equilibrium.
Collapse
Affiliation(s)
- Vivek Verma
- Department of BiosciencesDurham UniversityDurham DH1 3LEUK
| | - Fenella Croley
- Department of BiosciencesDurham UniversityDurham DH1 3LEUK
| | - Ari Sadanandom
- Department of BiosciencesDurham UniversityDurham DH1 3LEUK
| |
Collapse
|