1
|
Matkovic R, Morel M, Lanciano S, Larrous P, Martin B, Bejjani F, Vauthier V, Hansen MMK, Emiliani S, Cristofari G, Gallois-Montbrun S, Margottin-Goguet F. TASOR epigenetic repressor cooperates with a CNOT1 RNA degradation pathway to repress HIV. Nat Commun 2022; 13:66. [PMID: 35013187 PMCID: PMC8748822 DOI: 10.1038/s41467-021-27650-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
The Human Silencing Hub (HUSH) complex constituted of TASOR, MPP8 and Periphilin recruits the histone methyl-transferase SETDB1 to spread H3K9me3 repressive marks across genes and transgenes in an integration site-dependent manner. The deposition of these repressive marks leads to heterochromatin formation and inhibits gene expression, but the underlying mechanism is not fully understood. Here, we show that TASOR silencing or HIV-2 Vpx expression, which induces TASOR degradation, increases the accumulation of transcripts derived from the HIV-1 LTR promoter at a post-transcriptional level. Furthermore, using a yeast 2-hybrid screen, we identify new TASOR partners involved in RNA metabolism including the RNA deadenylase CCR4-NOT complex scaffold CNOT1. TASOR and CNOT1 synergistically repress HIV expression from its LTR. Similar to the RNA-induced transcriptional silencing complex found in fission yeast, we show that TASOR interacts with the RNA exosome and RNA Polymerase II, predominantly under its elongating state. Finally, we show that TASOR facilitates the association of RNA degradation proteins with RNA polymerase II and is detected at transcriptional centers. Altogether, we propose that HUSH operates at the transcriptional and post-transcriptional levels to repress HIV proviral expression.
Collapse
Affiliation(s)
- Roy Matkovic
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| | - Marina Morel
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | | | - Pauline Larrous
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Benjamin Martin
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Fabienne Bejjani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Virginie Vauthier
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, 6525 AM, Nijmegen, The Netherlands
| | - Stéphane Emiliani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | | | | | | |
Collapse
|
2
|
Zhao K, Cheng S, Miao N, Xu P, Lu X, Zhang Y, Wang M, Ouyang X, Yuan X, Liu W, Lu X, Zhou P, Gu J, Zhang Y, Qiu D, Jin Z, Su C, Peng C, Wang JH, Dong MQ, Wan Y, Ma J, Cheng H, Huang Y, Yu Y. A Pandas complex adapted for piRNA-guided transcriptional silencing and heterochromatin formation. Nat Cell Biol 2019; 21:1261-1272. [PMID: 31570835 DOI: 10.1038/s41556-019-0396-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022]
Abstract
The repression of transposons by the Piwi-interacting RNA (piRNA) pathway is essential to protect animal germ cells. In Drosophila, Panoramix enforces transcriptional silencing by binding to the target-engaged Piwi-piRNA complex, although the precise mechanisms by which this occurs remain elusive. Here, we show that Panoramix functions together with a germline-specific paralogue of a nuclear export factor, dNxf2, and its cofactor dNxt1 (p15), to suppress transposon expression. The transposon RNA-binding protein dNxf2 is required for animal fertility and Panoramix-mediated silencing. Transient tethering of dNxf2 to nascent transcripts leads to their nuclear retention. The NTF2 domain of dNxf2 competes dNxf1 (TAP) off nucleoporins, a process required for proper RNA export. Thus, dNxf2 functions in a Panoramix-dNxf2-dependent TAP/p15 silencing (Pandas) complex that counteracts the canonical RNA exporting machinery and restricts transposons to the nuclear peripheries. Our findings may have broader implications for understanding how RNA metabolism modulates heterochromatin formation.
Collapse
Affiliation(s)
- Kang Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sha Cheng
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Na Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Xu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,National Engineering Laboratory of AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaohua Lu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuhan Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuan Ouyang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Yuan
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Liu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Lu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Gu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiqun Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ding Qiu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaohui Jin
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua Wang
- Graduate School of Peking Union Medical College and Chinese Academy of Sciences of Medical Sciences, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Youzhong Wan
- National Engineering Laboratory of AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Cheng
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- University of Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China. .,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yang Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Renault S, Genty M, Gabori A, Boisneau C, Esnault C, Dugé de Bernonville T, Augé-Gouillou C. The epigenetic regulation of HsMar1, a human DNA transposon. BMC Genet 2019; 20:17. [PMID: 30764754 PMCID: PMC6375154 DOI: 10.1186/s12863-019-0719-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Both classes of transposable elements (DNA and RNA) are tightly regulated at the transcriptional level leading to the inactivation of transposition via epigenetic mechanisms. Due to the high copies number of these elements, the hypothesis has emerged that their regulation can coordinate a regulatory network of genes. Herein, we investigated whether transposition regulation of HsMar1, a human DNA transposon, differs in presence or absence of endogenous HsMar1 copies. In the case where HsMar1 transposition is regulated, the number of repetitive DNA sequences issued by HsMar1 and distributed in the human genome makes HsMar1 a good candidate to regulate neighboring gene expression by epigenetic mechanisms. RESULTS A recombinant active HsMar1 copy was inserted in HeLa (human) and CHO (hamster) cells and its genomic excision monitored. We show that HsMar1 excision is blocked in HeLa cells, whereas CHO cells are competent to promote HsMar1 excision. We demonstrate that de novo HsMar1 insertions in HeLa cells (human) undergo rapid silencing by cytosine methylation and apposition of H3K9me3 marks, whereas de novo HsMar1 insertions in CHO cells (hamster) are not repressed and enriched in H3K4me3 modifications. The overall analysis of HsMar1 endogenous copies in HeLa cells indicates that neither full-length endogenous inactive copies nor their Inverted Terminal Repeats seem to be specifically silenced, and are, in contrast, devoid of epigenetic marks. Finally, the setmar gene, derived from HsMar1, presents H3K4me3 modifications as expected for a human housekeeping gene. CONCLUSIONS Our work highlights that de novo and old HsMar1 are not similarly regulated by epigenetic mechanisms. Old HsMar1 are generally detected as lacking epigenetic marks, irrespective their localisation relative to the genes. Considering the putative existence of a network associating HsMar1 old copies and SETMAR, two non-mutually exclusive hypotheses are proposed: active and inactive HsMar1 copies are not similarly regulated or/and regulations concern only few loci (and few genes) that cannot be detected at the whole genome level.
Collapse
Affiliation(s)
- Sylvaine Renault
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
- UMR 1253, iBrain, University of Tours, INSERM, Tours, France
| | - Murielle Genty
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
- UMR 1253, iBrain, University of Tours, INSERM, Tours, France
| | - Alison Gabori
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Catherine Boisneau
- UMR CITERES CNRS 7324, Université de Tours, 35 Allée Ferdinand de Lesseps, 37200 Tours, France
| | - Charles Esnault
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | | | - Corinne Augé-Gouillou
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
- UMR 1253, iBrain, University of Tours, INSERM, Tours, France
| |
Collapse
|
4
|
Iwasaki YW, Murano K, Ishizu H, Shibuya A, Iyoda Y, Siomi MC, Siomi H, Saito K. Piwi Modulates Chromatin Accessibility by Regulating Multiple Factors Including Histone H1 to Repress Transposons. Mol Cell 2016; 63:408-19. [PMID: 27425411 DOI: 10.1016/j.molcel.2016.06.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/13/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
PIWI-interacting RNAs (piRNAs) mediate transcriptional and post-transcriptional silencing of transposable element (TE) in animal gonads. In Drosophila ovaries, Piwi-piRNA complexes (Piwi-piRISCs) repress TE transcription by modifying the chromatin state, such as by H3K9 trimethylation. Here, we demonstrate that Piwi physically interacts with linker histone H1. Depletion of Piwi decreases H1 density at a subset of TEs, leading to their derepression. Silencing at these loci separately requires H1 and H3K9me3 and heterochromatin protein 1a (HP1a). Loss of H1 increases target loci chromatin accessibility without affecting H3K9me3 density at these loci, while loss of HP1a does not impact H1 density. Thus, Piwi-piRISCs require both H1 and HP1a to repress TEs, and the silencing is correlated with the chromatin state rather than H3K9me3 marks. These findings suggest that Piwi-piRISCs regulate the interaction of chromatin components with target loci to maintain silencing of TEs through the modulation of chromatin accessibility.
Collapse
Affiliation(s)
- Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hirotsugu Ishizu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Aoi Shibuya
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yumiko Iyoda
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Kuniaki Saito
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
5
|
Götz U, Marker S, Cheaib M, Andresen K, Shrestha S, Durai DA, Nordström KJ, Schulz MH, Simon M. Two sets of RNAi components are required for heterochromatin formation in trans triggered by truncated transgenes. Nucleic Acids Res 2016; 44:5908-23. [PMID: 27085807 PMCID: PMC4937312 DOI: 10.1093/nar/gkw267] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/04/2016] [Indexed: 12/13/2022] Open
Abstract
Across kingdoms, RNA interference (RNAi) has been shown to control gene expression at the transcriptional- or the post-transcriptional level. Here, we describe a mechanism which involves both aspects: truncated transgenes, which fail to produce intact mRNA, induce siRNA accumulation and silencing of homologous loci in trans in the ciliate Paramecium. We show that silencing is achieved by co-transcriptional silencing, associated with repressive histone marks at the endogenous gene. This is accompanied by secondary siRNA accumulation, strictly limited to the open reading frame of the remote locus. Our data shows that in this mechanism, heterochromatic marks depend on a variety of RNAi components. These include RDR3 and PTIWI14 as well as a second set of components, which are also involved in post-transcriptional silencing: RDR2, PTIWI13, DCR1 and CID2. Our data indicates differential processing of nascent un-spliced and long, spliced transcripts thus suggesting a hitherto-unrecognized functional interaction between post-transcriptional and co-transcriptional RNAi. Both sets of RNAi components are required for efficient trans-acting RNAi at the chromatin level and our data indicates similar mechanisms contributing to genome wide regulation of gene expression by epigenetic mechanisms.
Collapse
Affiliation(s)
- Ulrike Götz
- Molecular Cell Dynamics Saarland University, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany Department of Biology, University of Kaiserslautern, Erwin-Schrödinger Straße, Building Nr. 14, 67663 Kaiserslautern, Germany
| | - Simone Marker
- Molecular Cell Dynamics Saarland University, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany
| | - Miriam Cheaib
- Molecular Cell Dynamics Saarland University, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany Department of Biology, University of Kaiserslautern, Erwin-Schrödinger Straße, Building Nr. 14, 67663 Kaiserslautern, Germany
| | - Karsten Andresen
- Institute of Biotechnology and Drug Research, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Simon Shrestha
- Molecular Cell Dynamics Saarland University, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany Department of Biology, University of Kaiserslautern, Erwin-Schrödinger Straße, Building Nr. 14, 67663 Kaiserslautern, Germany
| | - Dilip A Durai
- Cluster of Excellence, Multimodal Computing and Interaction and Max Planck Institute for Informatics Saarland University, Department for Computational Biology and Applied Algorithmics, Campus E1 4, 66123 Saarbrücken, Germany
| | - Karl J Nordström
- Department for Genetics, Saarland University, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany
| | - Marcel H Schulz
- Cluster of Excellence, Multimodal Computing and Interaction and Max Planck Institute for Informatics Saarland University, Department for Computational Biology and Applied Algorithmics, Campus E1 4, 66123 Saarbrücken, Germany
| | - Martin Simon
- Molecular Cell Dynamics Saarland University, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany
| |
Collapse
|
6
|
Yu Y, Gu J, Jin Y, Luo Y, Preall JB, Ma J, Czech B, Hannon GJ. Panoramix enforces piRNA-dependent cotranscriptional silencing. Science 2015; 350:339-42. [PMID: 26472911 PMCID: PMC4722808 DOI: 10.1126/science.aab0700] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Piwi-interacting RNA (piRNA) pathway is a small RNA-based innate immune system that defends germ cell genomes against transposons. In Drosophila ovaries, the nuclear Piwi protein is required for transcriptional silencing of transposons, though the precise mechanisms by which this occurs are unknown. Here we show that the CG9754 protein is a component of Piwi complexes that functions downstream of Piwi and its binding partner, Asterix, in transcriptional silencing. Enforced tethering of CG9754 to nascent messenger RNA transcripts causes cotranscriptional silencing of the source locus and the deposition of repressive chromatin marks. We have named CG9754 "Panoramix," and we propose that this protein could act as an adaptor, scaffolding interactions between the piRNA pathway and the general silencing machinery that it recruits to enforce transcriptional repression.
Collapse
Affiliation(s)
- Yang Yu
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jiaqi Gu
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Ying Jin
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yicheng Luo
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jonathan B Preall
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Benjamin Czech
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK. The New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| |
Collapse
|
7
|
|
8
|
Lhuillier-Akakpo M, Frapporti A, Denby Wilkes C, Matelot M, Vervoort M, Sperling L, Duharcourt S. Local effect of enhancer of zeste-like reveals cooperation of epigenetic and cis-acting determinants for zygotic genome rearrangements. PLoS Genet 2014; 10:e1004665. [PMID: 25254958 PMCID: PMC4177680 DOI: 10.1371/journal.pgen.1004665] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/12/2014] [Indexed: 11/22/2022] Open
Abstract
In the ciliate Paramecium tetraurelia, differentiation of the somatic nucleus from the zygotic nucleus is characterized by massive and reproducible deletion of transposable elements and of 45,000 short, dispersed, single-copy sequences. A specific class of small RNAs produced by the germline during meiosis, the scnRNAs, are involved in the epigenetic regulation of DNA deletion but the underlying mechanisms are poorly understood. Here, we show that trimethylation of histone H3 (H3K27me3 and H3K9me3) displays a dynamic nuclear localization that is altered when the endonuclease required for DNA elimination is depleted. We identified the putative histone methyltransferase Ezl1 necessary for H3K27me3 and H3K9me3 establishment and show that it is required for correct genome rearrangements. Genome-wide analyses show that scnRNA-mediated H3 trimethylation is necessary for the elimination of long, repeated germline DNA, while single copy sequences display differential sensitivity to depletion of proteins involved in the scnRNA pathway, Ezl1- a putative histone methyltransferase and Dcl5- a protein required for iesRNA biogenesis. Our study reveals cis-acting determinants, such as DNA length, also contribute to the definition of germline sequences to delete. We further show that precise excision of single copy DNA elements, as short as 26 bp, requires Ezl1, suggesting that development specific H3K27me3 and H3K9me3 ensure specific demarcation of very short germline sequences from the adjacent somatic sequences. The unicellular eukaryote Paramecium tetraurelia provides an extraordinary model for studying the mechanisms involved in zygotic genome rearrangements. At each sexual cycle, differentiation of the somatic nucleus from the zygotic nucleus is characterized by extensive remodeling of the entire somatic genome, which includes the precise excision of 45,000 short noncoding germline DNA segments to reconstitute functional open reading frames. Exploiting the unique properties of the Paramecium genome, we show that the enhancer of zeste like protein Ezl1 is necessary for histone H3 trimethylation on lysines 27 and 9 and is required for the precise excision of 31,000 of these single copy, dispersed germline DNA segments that can be as short as 26 bp in length. This implies that histone marks usually associated with heterochromatin may contribute to the precise demarcation of segments that are even shorter than the length of DNA wrapped around a single nucleosome. A quantitative analysis of high throughput sequencing datasets further shows that the underlying genetic properties of the germline DNA segments might act in concert with epigenetic signals to define germline specific sequences.
Collapse
Affiliation(s)
- Maoussi Lhuillier-Akakpo
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Sorbonne Universités, UPMC Univ., IFD, Paris, France
| | - Andrea Frapporti
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Denby Wilkes
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Département de Biologie, Université Paris-Sud, Orsay, France
| | - Mélody Matelot
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Institut Universitaire de France, Paris, France
| | - Linda Sperling
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Département de Biologie, Université Paris-Sud, Orsay, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
9
|
Klenov MS, Lavrov SA, Korbut AP, Stolyarenko AD, Yakushev EY, Reuter M, Pillai RS, Gvozdev VA. Impact of nuclear Piwi elimination on chromatin state in Drosophila melanogaster ovaries. Nucleic Acids Res 2014; 42:6208-18. [PMID: 24782529 PMCID: PMC4041442 DOI: 10.1093/nar/gku268] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Piwi-interacting RNA (piRNA)-interacting Piwi protein is involved in transcriptional silencing of transposable elements in ovaries of Drosophila melanogaster. Here we characterized the genome-wide effect of nuclear Piwi elimination on the presence of the heterochromatic H3K9me3 mark and HP1a, as well as on the transcription-associated mark H3K4me2. Our results demonstrate that a significant increase in the H3K4me2 level upon nuclear Piwi loss is not accompanied by the alterations in H3K9me3 and HP1a levels for several germline-expressed transposons, suggesting that in this case Piwi prevents transcription by a mechanism distinct from H3K9 methylation. We found that the targets of Piwi-dependent chromatin repression are mainly related to the elements that display a higher level of H3K4me2 modification in the absence of silencing, i.e. most actively transcribed elements. We also show that Piwi-guided silencing does not significantly influence the chromatin state of dual-strand piRNA-producing clusters. In addition, host protein-coding gene expression is essentially not affected due to the nuclear Piwi elimination, but we noted an increase in small nuclear spliceosomal RNAs abundance and propose Piwi involvement in their post-transcriptional regulation. Our work reveals new aspects of transposon silencing in Drosophila, indicating that transcription of transposons can underpin their Piwi dependent silencing, while canonical heterochromatin marks are not obligatory for their repression.
Collapse
Affiliation(s)
- Mikhail S Klenov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Sergey A Lavrov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Alina P Korbut
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | | | - Evgeny Y Yakushev
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Michael Reuter
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 France Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Ramesh S Pillai
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 France Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Vladimir A Gvozdev
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| |
Collapse
|
10
|
Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014; 505:353-359. [PMID: 24429634 PMCID: PMC4265809 DOI: 10.1038/nature12987] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
The discovery of millions of PIWI-interacting RNAs revealed a fascinating and unanticipated dimension of biology. The PIWI-piRNA pathway has been commonly perceived as germline-specific, even though the somatic function of PIWI proteins was documented when they were first discovered. Recent studies have begun to re-explore this pathway in somatic cells in diverse organisms, particularly lower eukaryotes. These studies have illustrated the multifaceted somatic functions of the pathway not only in transposon silencing but also in genome rearrangement and epigenetic programming, with biological roles in stem-cell function, whole-body regeneration, memory and possibly cancer.
Collapse
Affiliation(s)
- Robert J Ross
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Molly M Weiner
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| |
Collapse
|
11
|
Dönertas D, Sienski G, Brennecke J. Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. Genes Dev 2013; 27:1693-705. [PMID: 23913922 DOI: 10.1101/gad.221150.113] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The PIWI-interacting RNA (piRNA) pathway is a small RNA silencing system that keeps selfish genetic elements such as transposons under control in animal gonads. Several lines of evidence indicate that nuclear PIWI family proteins guide transcriptional silencing of their targets, yet the composition of the underlying silencing complex is unknown. Here we demonstrate that the double CHHC zinc finger protein gametocyte-specific factor 1 (Gtsf1) is an essential factor for Piwi-mediated transcriptional repression in Drosophila. Cells lacking Gtsf1 contain nuclear Piwi loaded with piRNAs, yet Piwi's silencing capacity is ablated. Gtsf1 interacts directly with a small subpool of nuclear Piwi, and loss of Gtsf1 phenocopies loss of Piwi in terms of deregulation of transposons, loss of H3K9 trimethylation (H3K9me3) marks at euchromatic transposon insertions, and deregulation of genes in proximity to repressed transposons. We propose that only a small fraction of nuclear Piwi is actively engaged in target silencing and that Gtsf1 is an essential component of the underlying Piwi-centered silencing complex.
Collapse
Affiliation(s)
- Derya Dönertas
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences IMBA, 1030 Vienna, Austria
| | | | | |
Collapse
|