1
|
Developing a Temperature-Inducible Transcriptional Rheostat in Neurospora crassa. mBio 2023; 14:e0329122. [PMID: 36744948 PMCID: PMC9973361 DOI: 10.1128/mbio.03291-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat shock protein (HSP)-encoding genes (hsp), part of the highly conserved heat shock response (HSR), are known to be induced by thermal stress in several organisms. In Neurospora crassa, three hsp genes, hsp30, hsp70, and hsp80, have been characterized; however, the role of defined cis elements in their responses to discrete changes in temperature remains largely unexplored. To fill this gap, while also aiming to obtain a reliable fungal heat shock-inducible system, we analyzed different sections of each hsp promoter by assessing the expression of real-time transcriptional reporters. Whereas all three promoters and their resected versions were acutely induced by high temperatures, only hsp30 displayed a broad range of expression and high tunability, amply exceeding other inducible promoter systems existing in Neurospora, such as quinic acid- or light-inducible ones. As proof of concept, we employed one of these promoters to control the expression of clr-2, which encodes the master regulator of Neurospora cellulolytic capabilities. The resulting strain fails to grow on cellulose at 25°C, whereas it grows robustly if heat shock pulses are delivered daily. Additionally, we designed two hsp30 synthetic promoters and characterized them, as well as the native promoters, using a gradient of high temperatures, yielding a wide range of responses to thermal stimuli. Thus, Neurospora hsp30-based promoters represent a new set of modular elements that can be used as transcriptional rheostats to adjust the expression of a gene of interest or for the implementation of regulated circuitries for synthetic biology and biotechnological strategies. IMPORTANCE A timely and dynamic response to strong temperature fluctuations is paramount for organismal biology. At the same time, inducible promoters are a powerful tool for fungal biotechnological and synthetic biology endeavors. In this work, we analyzed the activity of several N. crassa heat shock protein (hsp) promoters at a wide range of temperatures, observing that hsp30 exhibits remarkable sensitivity and a dynamic range of expression as we charted the response of this promoter to subtle increases in temperature, and also as we built and analyzed synthetic promoters based on hsp30 cis elements. As proof of concept, we tested the ability of hsp30 to provide tight control of a central process, cellulose degradation. While this study provides an unprecedented description of the regulation of the N. crassa hsp genes, it also contributes a noteworthy addition to the molecular toolset of transcriptional controllers in filamentous fungi.
Collapse
|
2
|
Liu S, Pi J, Zhang Q. Signal amplification in the KEAP1-NRF2-ARE antioxidant response pathway. Redox Biol 2022; 54:102389. [PMID: 35792437 PMCID: PMC9287733 DOI: 10.1016/j.redox.2022.102389] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
The KEAP1-NRF2-ARE signaling pathway plays a central role in mediating the adaptive cellular stress response to oxidative and electrophilic chemicals. This canonical pathway has been extensively studied and reviewed in the past two decades, but rarely was it looked at from a quantitative signaling perspective. Signal amplification, i.e., ultrasensitivity, is crucially important for robust induction of antioxidant genes to appropriate levels that can adequately counteract the stresses. In this review article, we examined a number of well-known molecular events in the KEAP1-NRF2-ARE pathway from a quantitative perspective with a focus on how signal amplification can be achieved. We illustrated, by using a series of mathematical models, that redox-regulated protein sequestration, stabilization, translation, nuclear trafficking, DNA promoter binding, and transcriptional induction - which are embedded in the molecular network comprising KEAP1, NRF2, sMaf, p62, and BACH1 - may generate highly ultrasensitive NRF2 activation and antioxidant gene induction. The emergence and degree of ultrasensitivity depend on the strengths of protein-protein and protein-DNA interaction and protein abundances. A unique, quantitative understanding of signal amplification in the KEAP1-NRF2-ARE pathway will help to identify sensitive targets for the prevention and therapeutics of oxidative stress-related diseases and develop quantitative adverse outcome pathway models to facilitate the health risk assessment of oxidative chemicals.
Collapse
Affiliation(s)
- Shengnan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Pandelakis M, Delgado E, Ebrahimkhani MR. CRISPR-Based Synthetic Transcription Factors In Vivo: The Future of Therapeutic Cellular Programming. Cell Syst 2021; 10:1-14. [PMID: 31972154 DOI: 10.1016/j.cels.2019.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/14/2019] [Accepted: 10/09/2019] [Indexed: 01/04/2023]
Abstract
Pinpoint control over endogenous gene expression in vivo has long been a fevered dream for clinicians and researchers alike. With the recent repurposing of programmable, RNA-guided DNA endonucleases from the CRISPR bacterial immune system, this dream is becoming a powerful reality. Engineered CRISPR/Cas9-based transcriptional regulators and epigenome editors have enabled researchers to perturb endogenous gene expression in vivo, allowing for the therapeutic reprogramming of cell and tissue behavior. For this technology to be of maximal use, a variety of technological hurdles still need to be addressed. Better understanding of the design principle controlling gene expression together with technologies that enable spatiotemporal control of transcriptional engineering are fundamental for rational design, improved efficacy, and ultimately safe translation to humans. In this review, we will discuss recent advances and integrative strategies that can help pave the path toward a new class of transcriptional therapeutics.
Collapse
Affiliation(s)
- Matthew Pandelakis
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Elizabeth Delgado
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Mo R Ebrahimkhani
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA; Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|
5
|
Wiesner K, Teles J, Hartnor M, Peterson C. Haematopoietic stem cells: entropic landscapes of differentiation. Interface Focus 2018; 8:20180040. [PMID: 30443337 PMCID: PMC6227807 DOI: 10.1098/rsfs.2018.0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2018] [Indexed: 02/03/2023] Open
Abstract
The metaphor of a potential epigenetic differentiation landscape broadly suggests that during differentiation a stem cell approaches a stable equilibrium state from a higher free energy towards a stable equilibrium state which represents the final cell type. It has been conjectured that there is an analogy to the concept of entropy in statistical mechanics. In this context, in the undifferentiated state, the entropy would be large since fewer constraints exist on the gene expression programmes of the cell. As differentiation progresses, gene expression programmes become more and more constrained and thus the entropy would be expected to decrease. In order to assess these predictions, we compute the Shannon entropy for time-resolved single-cell gene expression data in two different experimental set-ups of haematopoietic differentiation. We find that the behaviour of this entropy measure is in contrast to these predictions. In particular, we find that the Shannon entropy is not a decreasing function of developmental pseudo-time but instead it increases towards the time point of commitment before decreasing again. This behaviour is consistent with an increase in gene expression disorder observed in populations sampled at the time point of commitment. Single cells in these populations exhibit different combinations of regulator activity that suggest the presence of multiple configurations of a potential differentiation network as a result of multiple entry points into the committed state.
Collapse
Affiliation(s)
- K Wiesner
- School of Mathematics, University of Bristol, Bristol BS8 1TW, UK.,Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund 223 62, Sweden
| | - J Teles
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund 223 62, Sweden.,Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - M Hartnor
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund 223 62, Sweden
| | - C Peterson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund 223 62, Sweden
| |
Collapse
|
6
|
Arthur RK, An N, Khan S, McNerney ME. The haploinsufficient tumor suppressor, CUX1, acts as an analog transcriptional regulator that controls target genes through distal enhancers that loop to target promoters. Nucleic Acids Res 2017; 45:6350-6361. [PMID: 28369554 PMCID: PMC5499738 DOI: 10.1093/nar/gkx218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/19/2023] Open
Abstract
One third of tumor suppressors are haploinsufficient transcriptional regulators, yet it remains unknown how a 50% reduction of a transcription factor is translated at the cis-regulatory level into a malignant transcriptional program. We studied CUX1, a haploinsufficient transcription factor that is recurrently mutated in hematopoietic and solid tumors. We determined CUX1 DNA-binding and target gene regulation in the wildtype and haploinsufficient states. CUX1 binds with transcriptional activators and cohesin at distal enhancers across three different human cell types. Haploinsufficiency of CUX1 altered the expression of a large number of genes, including cell cycle regulators, with concomitant increased cellular proliferation. Surprisingly, CUX1 occupancy decreased genome-wide in the haploinsufficient state, and binding site affinity did not correlate with differential gene expression. Instead, differentially expressed genes had multiple, low-affinity CUX1 binding sites, features of analog gene regulation. A machine-learning algorithm determined that chromatin accessibility, enhancer activity, and distance to the transcription start site are features of dose-sensitive CUX1 transcriptional regulation. Moreover, CUX1 is enriched at sites of DNA looping, as determined by Hi-C analysis, and these loops connect CUX1 to the promoters of regulated genes. We propose an analog model for haploinsufficient transcriptional deregulation mediated by higher order genome architecture.
Collapse
Affiliation(s)
- Robert K. Arthur
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, and The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Ningfei An
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, and The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Saira Khan
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, and The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Megan E. McNerney
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, and The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Bizjak M, Zimic N, Mraz M, Moškon M. Computational Framework for Modeling Multiple Noncooperative Transcription Factor Binding and Its Application to the Analysis of Nuclear Factor Kappa B Oscillatory Response. J Comput Biol 2016; 23:923-933. [PMID: 27322759 DOI: 10.1089/cmb.2016.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent studies have shown that regulation of many important genes is achieved with multiple transcription factor (TF) binding sites with low or no cooperativity. Additionally, noncooperative binding sites are gaining more and more importance in the field of synthetic biology. Here, we introduce a computational framework that can be applied to dynamical modeling and analysis of gene regulatory networks with multiple noncooperative TF binding sites. We propose two computational methods to be used within the framework, that is, average promoter state approximation and expression profiles based modeling. We demonstrate the application of the proposed framework on the analysis of nuclear factor kappa B (NF-κB) oscillatory response. We show that different promoter expression hypotheses in a combination with the number of TF binding sites drastically affect the dynamics of the observed system and should not be ignored in the process of quantitative dynamical modeling, as is usually the case in existent state-of-the-art computational analyses.
Collapse
Affiliation(s)
- Manca Bizjak
- Faculty of Computer and Information Science, University of Ljubljana , Ljubljana, Slovenia
| | - Nikolaj Zimic
- Faculty of Computer and Information Science, University of Ljubljana , Ljubljana, Slovenia
| | - Miha Mraz
- Faculty of Computer and Information Science, University of Ljubljana , Ljubljana, Slovenia
| | - Miha Moškon
- Faculty of Computer and Information Science, University of Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
8
|
Slattery M, Zhou T, Yang L, Dantas Machado AC, Gordân R, Rohs R. Absence of a simple code: how transcription factors read the genome. Trends Biochem Sci 2014; 39:381-99. [PMID: 25129887 DOI: 10.1016/j.tibs.2014.07.002] [Citation(s) in RCA: 366] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022]
Abstract
Transcription factors (TFs) influence cell fate by interpreting the regulatory DNA within a genome. TFs recognize DNA in a specific manner; the mechanisms underlying this specificity have been identified for many TFs based on 3D structures of protein-DNA complexes. More recently, structural views have been complemented with data from high-throughput in vitro and in vivo explorations of the DNA-binding preferences of many TFs. Together, these approaches have greatly expanded our understanding of TF-DNA interactions. However, the mechanisms by which TFs select in vivo binding sites and alter gene expression remain unclear. Recent work has highlighted the many variables that influence TF-DNA binding, while demonstrating that a biophysical understanding of these many factors will be central to understanding TF function.
Collapse
Affiliation(s)
- Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Tianyin Zhou
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Lin Yang
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Ana Carolina Dantas Machado
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Departments of Biostatistics and Bioinformatics, Computer Science, and Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA.
| | - Remo Rohs
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|