1
|
Lacy KD, Lee J, Rozen-Gagnon K, Wang W, Carroll TS, Kronauer DJ. Heterozygosity at a conserved candidate sex determination locus is associated with female development in the clonal raider ant ( Ooceraea biroi). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634795. [PMID: 39975376 PMCID: PMC11838215 DOI: 10.1101/2025.01.24.634795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sex determination is a developmental switch that triggers sex-specific developmental programs. This switch is "flipped" by the expression of genes that promote male- or female-specific development. Many lineages have evolved sex chromosomes that act as primary signals for sex determination. However, haplodiploidy (males are haploid and females are diploid), which occurs in ca. 12% of animal species, is incompatible with sex chromosomes. Haplodiploid taxa must, therefore, rely on other strategies for sex determination. One mechanism, "complementary sex determination" (CSD), uses heterozygosity as a proxy for diploidy. In CSD, heterozygosity at a sex determination locus triggers female development, while hemizygosity or homozygosity permits male development. CSD loci have been mapped in honeybees and two ant species, but we know little about their evolutionary history. Here, we investigate sex determination in the clonal raider ant, Ooceraea biroi. We identified a 46kb candidate CSD locus at which all females are heterozygous, but most diploid males are homozygous for either allele. As expected for CSD loci, the candidate locus has more alleles than most other loci, resulting in a peak of nucleotide diversity. This peak negligibly affects the amino acid sequences of protein-coding genes, suggesting that heterozygosity of a non-coding genomic sequence triggers female development. This locus is distinct from the CSD locus in honeybees but homologous to a CSD locus mapped in two distantly related ant species, implying that this molecular mechanism has been conserved since a common ancestor that lived approximately 112 million years ago.
Collapse
Affiliation(s)
- Kip D. Lacy
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Jina Lee
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Kathryn Rozen-Gagnon
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Wei Wang
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Daniel J.C. Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
2
|
Seiler J, Beye M. Honeybees' novel complementary sex-determining system: function and origin. Trends Genet 2024; 40:969-981. [PMID: 39232877 DOI: 10.1016/j.tig.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Complementary sex determination regulates female and male development in honeybees (Apis mellifera) via heterozygous versus homo-/hemizygous genotypes of the csd (complementary sex determiner) gene involving numerous naturally occurring alleles. This lineage-specific function offers a rare opportunity to understand an undescribed regulatory mechanism and the molecular evolutionary path leading to this mechanism. We reviewed recent advances in understanding how Csd recognizes different versus identical protein variants, how these variants regulate downstream pathways and sexual differentiation, and how this mechanism has evolved and been shaped by evolutionary forces. Finally, we highlighted the shared regulatory principles of sex determination despite the diversity of primary signals and demonstrated that lineage-specific mutations are very informative for characterizing newly evolved functions.
Collapse
Affiliation(s)
- Jana Seiler
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Pan Q, Darras H, Keller L. LncRNA gene ANTSR coordinates complementary sex determination in the Argentine ant. SCIENCE ADVANCES 2024; 10:eadp1532. [PMID: 38820161 PMCID: PMC11141628 DOI: 10.1126/sciadv.adp1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
Animals have evolved various sex determination systems. Here, we describe a newly found mechanism. A long noncoding RNA (lncRNA) transduces complementary sex determination (CSD) signal in the invasive Argentine ant. In this haplodiploid species, we identified a 5-kilobase hyper-polymorphic region underlying CSD: Heterozygous embryos become females, while homozygous and hemizygous embryos become males. Heterozygosity at the CSD locus correlates with higher expression of ANTSR, a gene that overlaps with the CSD locus and specifies an lncRNA transcript. ANTSR knockdown in CSD heterozygotes leads to male development. Comparative analyses indicated that, in Hymenoptera, ANTSR is an ancient yet rapidly evolving gene. This study reveals an lncRNA involved in genetic sex determination, alongside a previously unknown regulatory mechanism underlying sex determination based on complementarity among noncoding alleles.
Collapse
Affiliation(s)
- Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Hugo Darras
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Laurent Keller
- Social Evolution Unit, Cornuit 8, BP 855, Chesières, Switzerland
| |
Collapse
|
4
|
De Iorio MG, Lazzari B, Colli L, Pagnacco G, Minozzi G. Variability and Number of Circulating Complementary Sex Determiner ( Csd) Alleles in a Breeding Population of Italian Honeybees under Controlled Mating. Genes (Basel) 2024; 15:652. [PMID: 38927588 PMCID: PMC11202483 DOI: 10.3390/genes15060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
In Apis mellifera, csd is the primary gene involved in sex determination: haploid hemizygous eggs develop as drones, while females develop from eggs heterozygous for the csd gene. If diploid eggs are homozygous for the csd gene, diploid drones will develop, but will be eaten by worker bees before they are born. Therefore, high csd allelic diversity is a priority for colony survival and breeding. This study aims to investigate the variability of the hypervariable region (HVR) of the csd gene in bees sampled in an apiary under a selection scheme. To this end, an existing dataset of 100 whole-genome sequences was analyzed with a validated pipeline based on de novo assembly of sequences within the HVR region. In total, 102 allelic sequences were reconstructed and translated into amino acid sequences. Among these, 47 different alleles were identified, 44 of which had previously been observed, while 3 are novel alleles. The results show a high variability in the csd region in this breeding population of honeybees.
Collapse
Affiliation(s)
- Maria Grazia De Iorio
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy;
| | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy; (B.L.); (G.P.)
| | - Licia Colli
- Department of Animal, Nutrition and Food Sciences and Research Center on Biodiversity and Ancient DNA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Giulio Pagnacco
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy; (B.L.); (G.P.)
| | - Giulietta Minozzi
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy;
| |
Collapse
|
5
|
van’t Hof AE, Whiteford S, Yung CJ, Yoshido A, Zrzavá M, de Jong MA, Tan KL, Zhu D, Monteiro A, Brakefield PM, Marec F, Saccheri IJ. Zygosity-based sex determination in a butterfly drives hypervariability of Masculinizer. SCIENCE ADVANCES 2024; 10:eadj6979. [PMID: 38701204 PMCID: PMC11067997 DOI: 10.1126/sciadv.adj6979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Nature has devised many ways of producing males and females. Here, we report on a previously undescribed mechanism for Lepidoptera that functions without a female-specific gene. The number of alleles or allele heterozygosity in a single Z-linked gene (BaMasc) is the primary sex-determining switch in Bicyclus anynana butterflies. Embryos carrying a single BaMasc allele develop into WZ (or Z0) females, those carrying two distinct alleles develop into ZZ males, while (ZZ) homozygotes initiate female development, have mismatched dosage compensation, and die as embryos. Consequently, selection against homozygotes has favored the evolution of spectacular allelic diversity: 205 different coding sequences of BaMasc were detected in a sample of 246 females. The structural similarity of a hypervariable region (HVR) in BaMasc to the HVR in Apis mellifera csd suggests molecular convergence between deeply diverged insect lineages. Our discovery of this primary switch highlights the fascinating diversity of sex-determining mechanisms and underlying evolutionary drivers.
Collapse
Affiliation(s)
- Arjen E. van’t Hof
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Sam Whiteford
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Carl J. Yung
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Atsuo Yoshido
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Magda Zrzavá
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Maaike A. de Jong
- Netherlands eScience Center, Science Park 402, 1098 XH Amsterdam, Netherlands
| | - Kian-Long Tan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Dantong Zhu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Ilik J. Saccheri
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
6
|
Otte M, Netschitailo O, Weidtkamp-Peters S, Seidel CA, Beye M. Recognition of polymorphic Csd proteins determines sex in the honeybee. SCIENCE ADVANCES 2023; 9:eadg4239. [PMID: 37792946 PMCID: PMC10550236 DOI: 10.1126/sciadv.adg4239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Sex in honeybees, Apis mellifera, is genetically determined by heterozygous versus homo/hemizygous genotypes involving numerous alleles at the single complementary sex determination locus. The molecular mechanism of sex determination is however unknown because there are more than 4950 known possible allele combinations, but only two sexes in the species. We show how protein variants expressed from complementary sex determiner (csd) gene determine sex. In females, the amino acid differences between Csd variants at the potential-specifying domain (PSD) direct the selection of a conserved coiled-coil domain for binding and protein complexation. This recognition mechanism activates Csd proteins and, thus, the female pathway. In males, the absence of polymorphisms establishes other binding elements at PSD for binding and complexation of identical Csd proteins. This second recognition mechanism inactivates Csd proteins and commits male development via default pathway. Our results demonstrate that the recognition of different versus identical variants of a single protein is a mechanism to determine sex.
Collapse
Affiliation(s)
- Marianne Otte
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Oksana Netschitailo
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Claus A. M. Seidel
- Institut für Physikalische Chemie, Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
7
|
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103873. [PMID: 36400424 DOI: 10.1016/j.ibmb.2022.103873] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.
Collapse
Affiliation(s)
- Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
| |
Collapse
|
8
|
Lago DC, Hasselmann M, Hartfelder K. Sex- and caste-specific transcriptomes of larval honey bee (Apis mellifera L.) gonads: DMRT A2 and Hsp83 are differentially expressed and regulated by juvenile hormone. INSECT MOLECULAR BIOLOGY 2022; 31:593-608. [PMID: 35524973 DOI: 10.1111/imb.12782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The gonads of honey bee, Apis mellifera, queens and drones are each composed of hundreds of serial units, the ovarioles and testioles, while the ovaries of the adult subfertile workers consist of only few ovarioles. We performed a comparative RNA-seq analysis on early fifth-instar (L5F1) larval gonads, which is a critical stage in gonad development of honey bee larvae. A total of 1834 genes were identified as differentially expressed (Padj < 0.01) among the three sex and caste phenotypes. The Gene Ontology analysis showed significant enrichment for metabolism, protein or ion binding, and oxidoreductase activity, and a KEGG analysis revealed metabolic pathways as enriched. In a principal component analysis for the total transcriptomes and hierarchical clustering of the DEGs, we found higher similarity between the queen and worker ovary transcriptomes compared to the drone testis, despite the onset of programmed cell death in the worker ovaries. Four DEGs were selected for RT-qPCR analyses, including their response to juvenile hormone (JH), which is a critical factor in the caste-specific development of the ovaries. Among these, DMRT A2 and Hsp83 were found upregulated by JH and, thus, emerged as potential molecular markers for sex- and caste-specific gonad development in honey bees.
Collapse
Affiliation(s)
- Denyse Cavalcante Lago
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Martin Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Klaus Hartfelder
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Mroczek R, Laszkiewicz A, Blazej P, Adamczyk-Weglarzy K, Niedbalska-Tarnowska J, Cebrat M. New insights into the criteria of functional heterozygosity of the Apis mellifera complementary sex determining gene–Discovery of a functional allele pair differing by a single amino acid. PLoS One 2022; 17:e0271922. [PMID: 35944027 PMCID: PMC9362917 DOI: 10.1371/journal.pone.0271922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
The complementary sex determiner (csd) gene is responsible for controlling the sex-determination molecular switch in western honey bees (Apis mellifera): bees that are heterozygous for csd develop into females, whereas bees that are hemizygous or homozygous develop into males. The homozygous diploid males are destroyed at an early stage of their development. It has been proposed that the minimal number of amino acid differences between two csd alleles needed to fully determine femaleness is five and it has also been shown that smaller differences may result in forming an evolutionary intermediate that is not fully capable of female determination, but has increased fitness compared to the homozygous genotype. In this study, we have implemented a terminal restriction length polymorphism-based method of identifying and distinguishing paternal alleles in a given bee colony and assigning them to a particular maternal allele in order to gather information on large number of functional csd pairs and also to identify, to some extent, genotypes that are underrepresented or absent in bee colonies. The main finding of this study is the identification of a fully functional genotype consisting of csd alleles that differed from each other by a one amino acid position. The individuals carrying this genotype expressed only female-specific transcripts of feminizer and double-sex genes. By comparing the sequences differences between the csd pair identified in our study with those described earlier, we conclude that functional heterozygosity of the csd gene is dependent not only on the number of the amino acid differences but also on the sequence context and position of the change. The discovery of a functional allele pair differing by a single amino acid also implies that the generation of a new csd specificity may also occur during a single mutation step with no need for evolutionary intermediates accumulating further mutations.
Collapse
Affiliation(s)
- Robert Mroczek
- Laboratory of Molecular and Cellular Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wroclaw, Poland
| | - Agnieszka Laszkiewicz
- Laboratory of Molecular and Cellular Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wroclaw, Poland
| | - Pawel Blazej
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Kinga Adamczyk-Weglarzy
- Laboratory of Molecular and Cellular Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Niedbalska-Tarnowska
- Laboratory of Molecular and Cellular Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wroclaw, Poland
| | - Malgorzata Cebrat
- Laboratory of Molecular and Cellular Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wroclaw, Poland
- * E-mail:
| |
Collapse
|
10
|
Paolillo G, De Iorio MG, Filipe JFS, Riva F, Stella A, Gandini G, Pagnacco G, Lazzari B, Minozzi G. Analysis of Complementary Sex-Determiner (csd) Allele Diversity in Different Honeybee Subspecies from Italy Based on NGS Data. Genes (Basel) 2022; 13:genes13060991. [PMID: 35741752 PMCID: PMC9222915 DOI: 10.3390/genes13060991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/28/2022] [Indexed: 02/05/2023] Open
Abstract
Sexual regulation in Apis mellifera is controlled by the complementary sex-determiner (csd) gene: females (queens and workers) are heterozygous at this locus and males (drones) are hemizygous. When homozygous diploid drones develop, they are eaten by worker bees. High csd allelic diversity in honeybee populations is a priority for colony survival. The focus of this study is to investigate csd variability in the genomic sequence of the hypervariable region (HVR) of the csd gene in honeybee subspecies sampled in Italy. During the summer of 2017 and 2018, worker bees belonging to 125 colonies were sampled. The honeybees belonged to seven different A. mellifera subspecies: A. m. ligustica, A. m. sicula, A. m cecropia, A. m. carnica, A. m. mellifera, Buckfast and hybrid Carnica. Illumina genomic resequencing of all samples was performed and used for the characterization of global variability among colonies. In this work, a pipeline using existing resequencing data to explore the csd gene allelic variants present in the subspecies collection, based on de novo assembly of sequences falling within the HVR region, is described. On the whole, 138 allelic sequences were successfully reconstructed. Among these, 88 different alleles were identified, 68 of which match with csd alleles present in the NCBI GenBank database.
Collapse
Affiliation(s)
- Gianluigi Paolillo
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | - Maria Grazia De Iorio
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | - Joel F. Soares Filipe
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | - Federica Riva
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | | | - Gustavo Gandini
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | | | - Barbara Lazzari
- IBBA-CNR, 20133 Milano, Italy; (A.S.); (G.P.)
- Correspondence: (B.L.); (G.M.)
| | - Giulietta Minozzi
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
- Correspondence: (B.L.); (G.M.)
| |
Collapse
|
11
|
Wagner A, Seiler J, Beye M. Highly efficient site-specific integration of DNA fragments into the honeybee genome using CRISPR/Cas9. G3 (BETHESDA, MD.) 2022; 12:jkac098. [PMID: 35536186 PMCID: PMC9157169 DOI: 10.1093/g3journal/jkac098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
Functional genetic studies in honeybees have been limited to transposon mediated transformation and site directed mutagenesis tools. However, site- and sequence-specific manipulations that insert DNA fragments or replace sequences at specific target sites are lacking. Such tools would enable the tagging of proteins, the expression of reporters and site-specific amino acid changes, which are all gold standard manipulations for physiological, organismal, and genetic studies. However, such manipulations must be very efficient in honeybees since screening and crossing procedures are laborious due to their social organization. Here, we report an accurate and remarkably efficient site-specific integration of DNA-sequences into the honeybee genome using clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein 9-mediated homology-directed repair. We employed early embryonic injections and selected a highly efficient sgRNA in order to insert 294 and 729 bp long DNA sequences into a specific locus at the dsx gene. These sequences were locus-specifically integrated in 57% and 59% of injected bees. Most importantly, 21% and 25% of the individuals lacked the wildtype sequence demonstrating that we generated homozygous mutants in which all cells are affected (no mosaicism). The highly efficient, locus-specific insertions of nucleotide sequences generating homozygous mutants demonstrate that systematic molecular studies for honeybees are in hand that allow somatic mutation approaches via workers or studies in the next generation using queens with their worker progeny. The employment of early embryonic injections and screenings of highly efficient sgRNAs may offer the prospect of highly successful sequence- and locus-specific mutations also in other organisms.
Collapse
Affiliation(s)
- Anna Wagner
- Department of Biology, Institute of Evolutionary Genetics, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Jana Seiler
- Department of Biology, Institute of Evolutionary Genetics, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Martin Beye
- Department of Biology, Institute of Evolutionary Genetics, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Wang X, Lin Y, Liang L, Geng H, Zhang M, Nie H, Su S. Transcriptional Profiles of Diploid Mutant Apis mellifera Embryos after Knockout of csd by CRISPR/Cas9. INSECTS 2021; 12:insects12080704. [PMID: 34442270 PMCID: PMC8396534 DOI: 10.3390/insects12080704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary In honey bees, males are haploid while females are diploid, leading to a fundamental difference in genetic materials between the sexes. In order to better control the comparison of gene expression between males and females, diploid mutant males were generated by knocking out the sex-determining gene, complementary sex determiner (csd), in fertilized embryos. The diploid mutant drones had male external morphological features, as well as male gonads. RNA sequencing was performed on the diploid mutant embryos and one-day-old larvae. The transcriptome analysis showed that several female-biased genes, such as worker-enriched antennal (Wat), vitellogenin (Vg), and some venom-related genes, were down-regulated in the diploid mutant males. In contrast, some male-biased genes, like takeout and apolipophorin-III-like protein (A4), were up-regulated. Moreover, the co-expression gene networks suggested that csd might interact very closely with fruitless (fru), feminizer (fem) might have connections with hexamerin 70c (hex70c), and transformer-2 (tra2) might play roles with troponin T (TpnT). Foundational information about the differences in the gene expression caused by sex differentiation was provided in this study. It is believed that this study will pave the ground for further research on the different mechanisms between males and females in honey bees. Abstract In honey bees, complementary sex determiner (csd) is the primary signal of sex determination. Its allelic composition is heterozygous in females, and hemizygous or homozygous in males. To explore the transcriptome differences after sex differentiation between males and females, with genetic differences excluded, csd in fertilized embryos was knocked out by CRISPR/Cas9. The diploid mutant males at 24 h, 48 h, 72 h, and 96 h after egg laying (AEL) and the mock-treated females derived from the same fertilized queen were investigated through RNA-seq. Mutations were detected in the target sequence in diploid mutants. The diploid mutant drones had typical male morphological characteristics and gonads. Transcriptome analysis showed that several female-biased genes, such as worker-enriched antennal (Wat), vitellogenin (Vg), and some venom-related genes, were down-regulated in the diploid mutant males. In contrast, some male-biased genes, such as takeout and apolipophorin-III-like protein (A4), had higher expressions in the diploid mutant males. Weighted gene co-expression network analysis (WGCNA) indicated that there might be interactions between csd and fruitless (fru), feminizer (fem) and hexamerin 70c (hex70c), transformer-2 (tra2) and troponin T (TpnT). The information provided by this study will benefit further research on the sex dimorphism and development of honey bees and other insects in Hymenoptera.
Collapse
Affiliation(s)
- Xiuxiu Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
| | - Liqiang Liang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
| | - Haiyang Geng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
| | - Meng Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
- Apicultural Research Institute of Jiangxi Province, Nanchang 330052, China
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
- Correspondence: (H.N.); (S.S.); Tel.: +86-157-0590-2721 (H.N.); +86-181-0503-9938 (S.S.)
| | - Songkun Su
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
- Correspondence: (H.N.); (S.S.); Tel.: +86-157-0590-2721 (H.N.); +86-181-0503-9938 (S.S.)
| |
Collapse
|
13
|
Possible Epigenetic Origin of a Recurrent Gynandromorph Pattern in Megachile Wild Bees. INSECTS 2021; 12:insects12050437. [PMID: 34066094 PMCID: PMC8151954 DOI: 10.3390/insects12050437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 11/21/2022]
Abstract
Simple Summary Gynandromorphs, i.e., individuals with a mix of male and female body parts, are known for many species of insects and other animals with separate sexes. This anomaly is generally regarded as the result of localized genetic mutations in sex-determining genes. We analyzed the specific mix of male and female characters in naturally occurring gynandromorphs of 21 species of the wild bee genus Megachile and found a recurrent pattern. Based on the regularity of this pattern, and the current knowledge on sex determination and sex differentiation in the relatively closely-related honey bee, we argue that the origin of these composite phenotypes is possibly epigenetic, rather than genetic, i.e., produced by some defects in the maintenance of the regulatory signals that control sex differentiation at the level of single cell lineages, rather than triggered by genetic mutations. Abstract Gynandromorphs, i.e., individuals with a mix of male and female traits, are common in the wild bees of the genus Megachile (Hymenoptera, Apoidea). We described new transverse gynandromorphs in Megachile pilidens Alfkeen, 1924 and analyze the spatial distribution of body parts with male vs. female phenotype hitherto recorded in the transverse gynandromorphs of the genus Megachile. We identified 10 different arrangements, nine of which are minor variants of a very general pattern, with a combination of male and female traits largely shared by the gynandromorphs recorded in 20 out of 21 Megachile species in our dataset. Based on the recurrence of the same gynandromorph pattern, the current knowledge on sex determination and sex differentiation in the honey bee, and the results of recent gene-knockdown experiments in these insects, we suggest that these composite phenotypes are possibly epigenetic, rather than genetic, mosaics, with individual body parts of either male or female phenotype according to the locally expressed product of the alternative splicing of sex-determining gene transcripts.
Collapse
|
14
|
Global allele polymorphism indicates a high rate of allele genesis at a locus under balancing selection. Heredity (Edinb) 2020; 126:163-177. [PMID: 32855546 DOI: 10.1038/s41437-020-00358-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 11/08/2022] Open
Abstract
When selection favours rare alleles over common ones (balancing selection in the form of negative frequency-dependent selection), a locus may maintain a large number of alleles, each at similar frequency. To better understand how allelic richness is generated and maintained at such loci, we assessed 201 sequences of the complementary sex determiner (csd) of the Asian honeybee (Apis cerana), sampled from across its range. Honeybees are haplodiploid; hemizygotes at csd develop as males and heterozygotes as females, while homozygosity is lethal. Thus, csd is under strong negative frequency-dependent selection because rare alleles are less likely to end up in the lethal homozygous form. We find that in A. cerana, as in other Apis, just a few amino acid differences between csd alleles in the hypervariable region are sufficient to trigger female development. We then show that while allelic lineages are spread across geographical regions, allelic differentiation is high between populations, with most csd alleles (86.3%) detected in only one sample location. Furthermore, nucleotide diversity in the hypervariable region indicates an excess of recently arisen alleles, possibly associated with population expansion across Asia since the last glacial maximum. Only the newly invasive populations of the Austral-Pacific share most of their csd alleles. In all, the geographic patterns of csd diversity in A. cerana indicate that high mutation rates and balancing selection act together to produce high rates of allele genesis and turnover at the honeybee sex locus, which in turn leads to its exceptionally high local and global polymorphism.
Collapse
|
15
|
An Alternative, High Throughput Method to Identify Csd Alleles of the Honey Bee. INSECTS 2020; 11:insects11080483. [PMID: 32751511 PMCID: PMC7469139 DOI: 10.3390/insects11080483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/05/2022]
Abstract
Applying instrumental insemination in closely related honey bee colonies often leads to frequent lethality of offspring causing colony collapse. This is due to the peculiarities of honey bee reproductive biology, where the complementary sex determination (csd) gene drives sex determination within a haplodiploid system. Diploid drones containing homozygous genotypes are lethal. Tracking of csd alleles using molecular markers prevents this unwanted event in closed breeding programs. Our approach described here is based on high throughput sequencing (HTS) that provides more data than traditional molecular techniques and is capable of analysing sources containing multiple alleles, including diploid individuals as the bee queen. The approach combines HTS technique and clipping wings as a minimally invasive method to detect the complementary sex determiner (csd) alleles directly from honey bee queens. Furthermore, it might also be suitable for screening alleles of honey harvested from hives of a closed breeding facility. Data on alleles of the csd gene from different honey bee subspecies are provided. It might contribute to future databases that could potentially be used to track the origin of honey. With the help of tracking csd alleles, more focused crossings will be possible, which could in turn accelerate honey bee breeding programmes targeting increase tolerance against varroosis as well.
Collapse
|
16
|
Meisel RP. Evolution of Sex Determination and Sex Chromosomes: A Novel Alternative Paradigm. Bioessays 2020; 42:e1900212. [DOI: 10.1002/bies.201900212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Richard P. Meisel
- Department of Biology and Biochemistry University of Houston 3455 Cullen Blvd Houston TX 77204‐5001 USA
| |
Collapse
|
17
|
Kaskinova MD, Gataullin AR, Saltykova ES, Gaifullina LR, Poskryakov AV, Nikolenko AG. Polymorphism of the Hypervariable Region of the csd Gene in the Apis mellifera L. Population in Southern Urals. RUSS J GENET+ 2019. [DOI: 10.1134/s102279541902008x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Evidence for Stabilizing Selection Driving Mutational Turnover of Short Motifs in the Eukaryotic Complementary Sex Determiner (Csd) Protein. G3-GENES GENOMES GENETICS 2018; 8:3803-3812. [PMID: 30287489 PMCID: PMC6288827 DOI: 10.1534/g3.118.200527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Short linear motifs (SLiMs) can play pivotal functional roles in proteins, such as targeting proteins to specific subcellular localizations, modulating the efficiency of translation and tagging proteins for degradation. Until recently we had little knowledge about SLiM evolution. Only a few amino acids in these motifs are functionally important, making them likely to evolve ex nihilo and suggesting that they can play key roles in protein evolution. Several reports now suggest that these motifs can appear and disappear while their function in the protein is preserved, a process sometimes referred to as “turnover”. However, there has been a lack of specific experiments to determine whether independently evolved motifs do indeed have the same function, which would conclusively determine whether the process of turnover actually occurs. In this study, we experimentally detected evidence for such a mutational turnover process for nuclear localization signals (NLS) during the post-duplication divergence of the Complementary sex determiner (Csd) and Feminizer (Fem) proteins in the honeybee (Apis mellifera) lineage. Experiments on the nuclear transport activity of protein segments and those of the most recent common ancestor (MRCA) sequences revealed that three new NLS motifs evolved in the Csd protein during the post-duplication divergence while other NLS motifs were lost that existed before duplication. A screen for essential and newly evolved amino acids revealed that new motifs in the Csd protein evolved by one or two missense mutations coding for lysine. Amino acids that were predating the duplication were also essential in the acquisition of the C1 motif suggesting that the ex nihilo origin was constrained by preexisting amino acids in the physical proximity. Our data support a model in which stabilizing selection maintains the constancy of nuclear transport function but allowed mutational turnover of the encoding NLS motifs.
Collapse
|
19
|
Otte M, Netschitailo O, Kaftanoglu O, Wang Y, Page RE, Beye M. Improving genetic transformation rates in honeybees. Sci Rep 2018; 8:16534. [PMID: 30409987 PMCID: PMC6224437 DOI: 10.1038/s41598-018-34724-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/22/2018] [Indexed: 01/01/2023] Open
Abstract
Functional genetic studies in honeybees have been limited by transformation tools that lead to a high rate of transposon integration into the germline of the queens. A high transformation rate is required to reduce screening efforts because each treated queen needs to be maintained in a separate honeybee colony. Here, we report on further improvement of the transformation rate in honeybees by using a combination of different procedures. We employed a hyperactive transposase protein (hyPBaseapis), we tripled the amount of injected transposase mRNAs and we injected embryos into the first third (anterior part) of the embryo. These three improvements together doubled the transformation rate from 19% to 44%. We propose that the hyperactive transposase (hyPBaseapis) and the other steps used may also help to improve the transformation rates in other species in which screening and crossing procedures are laborious.
Collapse
Affiliation(s)
- M Otte
- Evolutionary Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - O Netschitailo
- Evolutionary Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - O Kaftanoglu
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Y Wang
- School of Life Sciences, Arizona State University, Tempe, United States
| | - R E Page
- School of Life Sciences, Arizona State University, Tempe, United States
- Department of Entomology and Nematology, University of California, Davis, United States
| | - M Beye
- Evolutionary Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
20
|
Zareba J, Blazej P, Laszkiewicz A, Sniezewski L, Majkowski M, Janik S, Cebrat M. Uneven distribution of complementary sex determiner (csd) alleles in Apis mellifera population. Sci Rep 2017; 7:2317. [PMID: 28539589 PMCID: PMC5443781 DOI: 10.1038/s41598-017-02629-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/04/2017] [Indexed: 11/23/2022] Open
Abstract
The complementary sex determiner (csd) gene determines the sex of the western honey bee (Apis mellifera L.). Bees that are heterozygous at the csd locus develop into females; whereas hemizygous bees develop into males. The co-occurrence of two identical csd alleles in a single diploid genome leads to the genetic death of the bee. Thus, the maintenance of csd diversity in the population is favoured. The number and distribution of csd alleles is particularly interesting in light of the recent decline in the honey bee population. In this study, we analysed the distribution of csd alleles in two Polish populations separated by about 100 km. We analysed the maternal alleles of 193 colonies and found 121 different alleles. We also analysed the distribution and frequency of the alleles, and found that they are distributed unevenly. We show that the methods that have been used so far to estimate the total worldwide number of csd alleles have significantly underestimated their diversity. We also show that the uneven distribution of csd alleles is caused by a large number of infrequent alleles, which most likely results from the fact that these alleles are generated very frequently.
Collapse
Affiliation(s)
- Joanna Zareba
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Pawel Blazej
- Department of Genomics, Faculty of Biotechnology, Wroclaw University, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Agnieszka Laszkiewicz
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Lukasz Sniezewski
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Michal Majkowski
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Sylwia Janik
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Malgorzata Cebrat
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland.
| |
Collapse
|
21
|
Kaskinova MD, Nikolenko AG. csd gene of honeybee: Genetic structure, functioning, and evolution. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417010070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
An invasive social insect overcomes genetic load at the sex locus. Nat Ecol Evol 2016; 1:11. [PMID: 28812560 DOI: 10.1038/s41559-016-0011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/09/2016] [Indexed: 11/08/2022]
Abstract
Some invasive hymenopteran social insects found new populations with very few reproductive individuals. This is despite the high cost of founder effects for such insects, which generally require heterozygosity at a single locus-the complementary sex determiner, csd-to develop as females. Individuals that are homozygous at csd develop as either infertile or subfertile diploid males or not at all. Furthermore, diploid males replace the female workers that are essential for colony function. Here we document how the Asian honey bee (Apis cerana) overcame the diploid male problem during its invasion of Australia. Natural selection prevented the loss of rare csd alleles due to genetic drift and corrected the skew in allele frequencies caused by founder effects to restore high average heterozygosity. Thus, balancing selection can alleviate the genetic load at csd imposed by severe bottlenecks, and so facilitate invasiveness.
Collapse
|
23
|
Biewer M, Lechner S, Hasselmann M. Similar but not the same: insights into the evolutionary history of paralogous sex-determining genes of the dwarf honey bee Apis florea. Heredity (Edinb) 2015; 116:12-22. [PMID: 26153222 DOI: 10.1038/hdy.2015.60] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 01/07/2023] Open
Abstract
Studying the fate of duplicated genes provides informative insight into the evolutionary plasticity of biological pathways to which they belong. In the paralogous sex-determining genes complementary sex determiner (csd) and feminizer (fem) of honey bee species (genus Apis), only heterozygous csd initiates female development. Here, the full-length coding sequences of the genes csd and fem of the phylogenetically basal dwarf honey bee Apis florea are characterized. Compared with other Apis species, remarkable evolutionary changes in the formation and localization of a protein-interacting (coiled-coil) motif and in the amino acids coding for the csd characteristic hypervariable region (HVR) are observed. Furthermore, functionally different csd alleles were isolated as genomic fragments from a random population sample. In the predicted potential specifying domain (PSD), a high ratio of πN/πS=1.6 indicated positive selection, whereas signs of balancing selection, commonly found in other Apis species, are missing. Low nucleotide diversity on synonymous and genome-wide, non-coding sites as well as site frequency analyses indicated a strong impact of genetic drift in A. florea, likely linked to its biology. Along the evolutionary trajectory of ~30 million years of csd evolution, episodic diversifying selection seems to have acted differently among distinct Apis branches. Consistently low amino-acid differences within the PSD among pairs of functional heterozygous csd alleles indicate that the HVR is the most important region for determining allele specificity. We propose that in the early history of the lineage-specific fem duplication giving rise to csd in Apis, A. florea csd stands as a remarkable example for the plasticity of initial sex-determining signals.
Collapse
Affiliation(s)
- M Biewer
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - S Lechner
- CeGaT GmbH - Center for Genomics and Transcriptomics, Tübingen, Germany
| | - M Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
24
|
de Boer JG, Groenen MAM, Pannebakker BA, Beukeboom LW, Kraus RHS. Population-level consequences of complementary sex determination in a solitary parasitoid. BMC Evol Biol 2015; 15:98. [PMID: 26025754 PMCID: PMC4461988 DOI: 10.1186/s12862-015-0340-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/26/2015] [Indexed: 11/16/2022] Open
Abstract
Background Sex determination mechanisms are known to be evolutionarily labile but the factors driving transitions in sex determination mechanisms are poorly understood. All insects of the Hymenoptera are haplodiploid, with males normally developing from unfertilized haploid eggs. Under complementary sex determination (CSD), diploid males can be produced from fertilized eggs that are homozygous at the sex locus. Diploid males have near-zero fitness and thus represent a genetic load, which is especially severe under inbreeding. Here, we study mating structure and sex determination in the parasitoid Cotesia vestalis to investigate what may have driven the evolution of two complementary sex determination loci in this species. Results We genotyped Cotesia vestalis females collected from eight fields in four townships in Western Taiwan. 98 SNP markers were developed by aligning Illumina sequence reads of pooled DNA of eight different females against a de novo assembled genome of C. vestalis. This proved to be an efficient method for this non-model species and provides a resource for future use in related species. We found significant genetic differentiation within the sampled population but variation could not be attributed to sampling locations by AMOVA. Non-random mating was detected, with 8.1% of matings between siblings. Diploid males, detected by flow cytometry, were produced at a rate of 1.4% among diploids. Conclusions We think that the low rate of diploid male production is best explained by a CSD system with two independent sex loci, supporting laboratory findings on the same species. Fitness costs of diploid males in C. vestalis are high because diploid males can mate with females and produce infertile triploid offspring. This severe fitness cost of diploid males combined with non-random mating may have resulted in evolution from single locus CSD to CSD with two independent loci. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0340-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jetske G de Boer
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands. .,Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Bart A Pannebakker
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Leo W Beukeboom
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands.
| | - Robert H S Kraus
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany. .,Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, 78315, Radolfzell, Germany.
| |
Collapse
|
25
|
Independent evolutionary origin of fem paralogous genes and complementary sex determination in hymenopteran insects. PLoS One 2014; 9:e91883. [PMID: 24743790 PMCID: PMC3990544 DOI: 10.1371/journal.pone.0091883] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 02/17/2014] [Indexed: 12/23/2022] Open
Abstract
The primary signal of sex determination in the honeybee, the complementary sex determiner (csd) gene, evolved from a gene duplication event from an ancestral copy of the fem gene. Recently, other paralogs of the fem gene have been identified in several ant and bumblebee genomes. This discovery and the close phylogenetic relationship of the paralogous gene sequences led to the hypothesis of a single ancestry of the csd genetic system of complementary sex determination in the Hymenopteran insects, in which the fem and csd gene copies evolved as a unit in concert with the mutual transfers of sequences (concerted evolution). Here, we show that the paralogous gene copies evolved repeatedly through independent gene duplication events in the honeybee, bumblebee, and ant lineage. We detected no sequence tracts that would indicate a DNA transfer between the fem and the fem1/csd genes between different ant and bee species. Instead, we found tracts of duplication events in other genomic locations, suggesting that gene duplication was a frequent event in the evolution of these genes. These and other evidences suggest that the fem1/csd gene originated repeatedly through gene duplications in the bumblebee, honeybee, and ant lineages in the last 100 million years. Signatures of concerted evolution were not detectable, implicating that the gene tree based on neutral synonymous sites represents the phylogenetic relationships and origins of the fem and fem1/csd genes. Our results further imply that the fem1 and csd gene in bumblebees, honeybees, and ants are not orthologs, because they originated independently from the fem gene. Hence, the widely shared and conserved complementary sex determination mechanism in Hymenopteran insects is controlled by different genes and molecular processes. These findings highlight the limits of comparative genomics and emphasize the requirement to study gene functions in different species and major hymenopteran lineages.
Collapse
|
26
|
Lechner S, Ferretti L, Schöning C, Kinuthia W, Willemsen D, Hasselmann M. Nucleotide variability at its limit? Insights into the number and evolutionary dynamics of the sex-determining specificities of the honey bee Apis mellifera. Mol Biol Evol 2013; 31:272-87. [PMID: 24170493 PMCID: PMC3907057 DOI: 10.1093/molbev/mst207] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116–145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene.
Collapse
Affiliation(s)
- Sarah Lechner
- Institute of Evolutionary Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|