1
|
Yamhure-Ramírez D, Wainwright PC, Ramírez SR. Sexual dimorphism and morphological integration in the orchid bee brain. Sci Rep 2025; 15:8915. [PMID: 40087395 PMCID: PMC11909157 DOI: 10.1038/s41598-025-92712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Sex-specific behaviours are common across animals and often associated with sexual dimorphism in the nervous system. Using micro-CT scanning we standardized sex-specific brain atlases and tested for sexual dimorphism in the brain of the orchid bee Euglossa dilemma, a species with marked sex differences in social behaviour, mating strategies and foraging. Males show greater investment in all primary visual processing neuropils and are uniquely integrated with the central complex, evidenced by a strong positive covariation. This suggests that males invest more on locomotor control, flight stability and sky-compass navigation which may have evolved in response to sex-specific behaviours, like courtship display. In contrast, females have larger mushroom bodies that strongly and positively covary with the optic lobes and have increased volume of the Kenyon cell cluster, implying greater capabilities for visual associative memory. We speculate this is an adaptation to social and nest-building behaviours, and reliance on learning visual landmarks required for central place foraging. Our study provides the first record of sexually dimorphic morphological integration in the brain of an insect, an approach that revealed sex-specific brain traits that lack an apparent morphological signal. These subtle differences provide further evidence for the causal link between brain architecture and behaviour.
Collapse
Affiliation(s)
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Santiago R Ramírez
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Paoli M, Giurfa M. Pesticides and pollinator brain: How do neonicotinoids affect the central nervous system of bees? Eur J Neurosci 2024; 60:5927-5948. [PMID: 39258341 DOI: 10.1111/ejn.16536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Neonicotinoids represent over a quarter of the global pesticide market. Research on their environmental impact has revealed their adverse effect on the cognitive functions of pollinators, in particular of bees. Cognitive impairments, mostly revealed by behavioural studies, are the phenotypic expression of an alteration in the underlying neural circuits, a matter deserving greater attention. Here, we reviewed studies on the impact of field-relevant doses of neonicotinoids on the neurophysiology and neurodevelopment of bees. In particular, we focus on their olfactory system as much knowledge has been gained on the different brain areas that participate in odour processing. Recent studies have revealed the detrimental effects of neonicotinoids at multiple levels of the olfactory system, including modulation of odorant-induced activity in olfactory sensory neurons, diminished neural responses in the antennal lobe (the first olfactory processing centre) and abnormal development of the neural connectivity within the mushroom bodies (central neuropils involved in multisensory integration, learning and memory storage, among others). Given the importance of olfactory perception for multiple aspects of bee biology, the reported disruption of the olfactory circuit, which can occur even upon exposure to sublethal doses of neonicotinoids, has severe consequences at both individual and colony levels. Moreover, the effects reported for a multimodal structure such as the mushroom bodies indicate that neonicotinoids' impact translates to other sensory domains. Assessing the impact of field-relevant doses of pesticides on bee neurophysiology is crucial for understanding how neonicotinoids influence their behaviour in ecological contexts and for defining effective and sustainable agricultural practices.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
| | - Martin Giurfa
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
3
|
Paoli M, Wystrach A, Ronsin B, Giurfa M. Analysis of fast calcium dynamics of honey bee olfactory coding. eLife 2024; 13:RP93789. [PMID: 39235447 PMCID: PMC11377060 DOI: 10.7554/elife.93789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Odour processing exhibits multiple parallels between vertebrate and invertebrate olfactory systems. Insects, in particular, have emerged as relevant models for olfactory studies because of the tractability of their olfactory circuits. Here, we used fast calcium imaging to track the activity of projection neurons in the honey bee antennal lobe (AL) during olfactory stimulation at high temporal resolution. We observed a heterogeneity of response profiles and an abundance of inhibitory activities, resulting in various response latencies and stimulus-specific post-odour neural signatures. Recorded calcium signals were fed to a mushroom body (MB) model constructed implementing the fundamental features of connectivity between olfactory projection neurons, Kenyon cells (KC), and MB output neurons (MBON). The model accounts for the increase of odorant discrimination in the MB compared to the AL and reveals the recruitment of two distinct KC populations that represent odorants and their aftersmell as two separate but temporally coherent neural objects. Finally, we showed that the learning-induced modulation of KC-to-MBON synapses can explain both the variations in associative learning scores across different conditioning protocols used in bees and the bees' response latency. Thus, it provides a simple explanation of how the time contingency between the stimulus and the reward can be encoded without the need for time tracking. This study broadens our understanding of olfactory coding and learning in honey bees. It demonstrates that a model based on simple MB connectivity rules and fed with real physiological data can explain fundamental aspects of odour processing and associative learning.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine - Institut de biologie Paris-Seine, Sorbonne Université, INSERM, CNRS, Paris, France
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université Paul Sabatier, CNRS, Toulouse, France
| | - Antoine Wystrach
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université Paul Sabatier, CNRS, Toulouse, France
| | - Brice Ronsin
- Centre de Biologie Intégrative, Université Paul Sabatier, CNRS, Toulouse, France
| | - Martin Giurfa
- Neuroscience Paris-Seine - Institut de biologie Paris-Seine, Sorbonne Université, INSERM, CNRS, Paris, France
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université Paul Sabatier, CNRS, Toulouse, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
4
|
Couto A, Marty S, Dawson EH, d'Ettorre P, Sandoz JC, Montgomery SH. Evolution of the neuronal substrate for kin recognition in social Hymenoptera. Biol Rev Camb Philos Soc 2023; 98:2226-2242. [PMID: 37528574 DOI: 10.1111/brv.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
In evolutionary terms, life is about reproduction. Yet, in some species, individuals forgo their own reproduction to support the reproductive efforts of others. Social insect colonies for example, can contain up to a million workers that actively cooperate in tasks such as foraging, brood care and nest defence, but do not produce offspring. In such societies the division of labour is pronounced, and reproduction is restricted to just one or a few individuals, most notably the queen(s). This extreme eusocial organisation exists in only a few mammals, crustaceans and insects, but strikingly, it evolved independently up to nine times in the order Hymenoptera (including ants, bees and wasps). Transitions from a solitary lifestyle to an organised society can occur through natural selection when helpers obtain a fitness benefit from cooperating with kin, owing to the indirect transmission of genes through siblings. However, this process, called kin selection, is vulnerable to parasitism and opportunistic behaviours from unrelated individuals. An ability to distinguish kin from non-kin, and to respond accordingly, could therefore critically facilitate the evolution of eusociality and the maintenance of non-reproductive workers. The question of how the hymenopteran brain has adapted to support this function is therefore a fundamental issue in evolutionary neuroethology. Early neuroanatomical investigations proposed that social Hymenoptera have expanded integrative brain areas due to selection for increased cognitive capabilities in the context of processing social information. Later studies challenged this assumption and instead pointed to an intimate link between higher social organisation and the existence of developed sensory structures involved in recognition and communication. In particular, chemical signalling of social identity, known to be mediated through cuticular hydrocarbons (CHCs), may have evolved hand in hand with a specialised chemosensory system in Hymenoptera. Here, we compile the current knowledge on this recognition system, from emitted identity signals, to the molecular and neuronal basis of chemical detection, with particular emphasis on its evolutionary history. Finally, we ask whether the evolution of social behaviour in Hymenoptera could have driven the expansion of their complex olfactory system, or whether the early origin and conservation of an olfactory subsystem dedicated to social recognition could explain the abundance of eusocial species in this insect order. Answering this question will require further comparative studies to provide a comprehensive view on lineage-specific adaptations in the olfactory pathway of Hymenoptera.
Collapse
Affiliation(s)
- Antoine Couto
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Simon Marty
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Erika H Dawson
- Laboratory of Experimental and Comparative Ethology, UR 4443 (LEEC), Université Sorbonne Paris Nord, 99 avenue J.-B. Clément, Villetaneuse, 93430, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, UR 4443 (LEEC), Université Sorbonne Paris Nord, 99 avenue J.-B. Clément, Villetaneuse, 93430, France
- Institut Universitaire de France (IUF), 103 Boulevard Saint-Michel, Paris, 75005, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Stephen H Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
5
|
Chandak R, Raman B. Neural manifolds for odor-driven innate and acquired appetitive preferences. Nat Commun 2023; 14:4719. [PMID: 37543628 PMCID: PMC10404252 DOI: 10.1038/s41467-023-40443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Sensory stimuli evoke spiking neural responses that innately or after learning drive suitable behavioral outputs. How are these spiking activities intrinsically patterned to encode for innate preferences, and could the neural response organization impose constraints on learning? We examined this issue in the locust olfactory system. Using a diverse odor panel, we found that ensemble activities both during ('ON response') and after stimulus presentations ('OFF response') could be linearly mapped onto overall appetitive preference indices. Although diverse, ON and OFF response patterns generated by innately appetitive odorants (higher palp-opening responses) were still limited to a low-dimensional subspace (a 'neural manifold'). Similarly, innately non-appetitive odorants evoked responses that were separable yet confined to another neural manifold. Notably, only odorants that evoked neural response excursions in the appetitive manifold could be associated with gustatory reward. In sum, these results provide insights into how encoding for innate preferences can also impact associative learning.
Collapse
Affiliation(s)
- Rishabh Chandak
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Baranidharan Raman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
6
|
Ke L, Chen X, Dai P, Liu YJ. Chronic larval exposure to thiacloprid impairs honeybee antennal selectivity, learning and memory performances. Front Physiol 2023; 14:1114488. [PMID: 37153228 PMCID: PMC10157261 DOI: 10.3389/fphys.2023.1114488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
The use of agricultural neonicotinoid insecticides has sub-lethal chronic effects on bees that are more prevalent than acute toxicity. Among these insecticides, thiacloprid, a commonly used compound with low toxicity, has attracted significant attention due to its potential impact on the olfactory and learning abilities of honeybees. The effect of sub-lethal larval exposure to thiacloprid on the antennal activity of adult honeybees (Apis mellifera L.) is not yet fully understood. To address this knowledge gap, laboratory-based experiments were conducted in which honeybee larvae were administered thiacloprid (0.5 mg/L and 1.0 mg/L). Using electroantennography (EAG), the impacts of thiacloprid exposure on the antennal selectivity to common floral volatiles were evaluated. Additionally, the effects of sub-lethal exposure on odor-related learning and memory were also assessed. The results of this study reveal, for the first time, that sub-lethal larval exposure to thiacloprid decreased honeybee antenna EAG responses to floral scents, leading to increased olfactory selectivity in the high-dose (1.0 mg/L) group compared to the control group (0 mg/L vs. 1.0 mg/L: p = 0.042). The results also suggest that thiacloprid negatively affected odor-associated paired learning acquisition, as well as medium-term (1 h) (0 mg/L vs. 1.0 mg/L: p = 0.019) and long-term memory (24 h) (0 mg/L vs. 1.0 mg/L: p = 0.037) in adult honeybees. EAG amplitudes were dramatically reduced following R-linalool paired olfactory training (0 mg/L vs. 1.0 mg/L: p = 0.001; 0 mg/L vs. 0.5 mg/L: p = 0.027), while antennal activities only differed significantly in the control between paired and unpaired groups. Our results indicated that exposure to sub-lethal concentrations of thiacloprid may affect olfactory perception and learning and memory behaviors in honeybees. These findings have important implications for the safe use of agrochemicals in the environment.
Collapse
Affiliation(s)
- Li Ke
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiasang Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Gomez Ramirez WC, Thomas NK, Muktar IJ, Riabinina O. The neuroecology of olfaction in bees. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101018. [PMID: 36842606 DOI: 10.1016/j.cois.2023.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 05/03/2023]
Abstract
The focus of bee neuroscience has for a long time been on only a handful of social honeybee and bumblebee species, out of thousands of bees species that have been described. On the other hand, information about the chemical ecology of bees is much more abundant. Here we attempted to compile the scarce information about olfactory systems of bees across species. We also review the major categories of intra- and inter-specific olfactory behaviors of bees, with specific focus on recent literature. We finish by discussing the most promising avenues for bee olfactory research in the near future.
Collapse
|
8
|
Scarano F, Deivarajan Suresh M, Tiraboschi E, Cabirol A, Nouvian M, Nowotny T, Haase A. Geosmin suppresses defensive behaviour and elicits unusual neural responses in honey bees. Sci Rep 2023; 13:3851. [PMID: 36890201 PMCID: PMC9995521 DOI: 10.1038/s41598-023-30796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Geosmin is an odorant produced by bacteria in moist soil. It has been found to be extraordinarily relevant to some insects, but the reasons for this are not yet fully understood. Here we report the first tests of the effect of geosmin on honey bees. A stinging assay showed that the defensive behaviour elicited by the bee's alarm pheromone component isoamyl acetate (IAA) is strongly suppressed by geosmin. Surprisingly, the suppression is, however, only present at very low geosmin concentrations, and disappears at higher concentrations. We investigated the underlying mechanisms at the level of the olfactory receptor neurons by means of electroantennography, finding the responses to mixtures of geosmin and IAA to be lower than to pure IAA, suggesting an interaction of both compounds at the olfactory receptor level. Calcium imaging of the antennal lobe (AL) revealed that neuronal responses to geosmin decreased with increasing concentration, correlating well with the observed behaviour. Computational modelling of odour transduction and coding in the AL suggests that a broader activation of olfactory receptor types by geosmin in combination with lateral inhibition could lead to the observed non-monotonic increasing-decreasing responses to geosmin and thus underlie the specificity of the behavioural response to low geosmin concentrations.
Collapse
Affiliation(s)
- Florencia Scarano
- Department of Physics, University of Trento, 38120, Trento, Italy.,Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy
| | | | - Ettore Tiraboschi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy
| | - Amélie Cabirol
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy.,Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Morgane Nouvian
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany.,Zukunftskolleg, University of Konstanz, 78464, Konstanz, Germany
| | - Thomas Nowotny
- School of Engineering and Informatics, University of Sussex, Brighton, BN1 9QJ, UK.
| | - Albrecht Haase
- Department of Physics, University of Trento, 38120, Trento, Italy. .,Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy.
| |
Collapse
|
9
|
Carcaud J, Otte M, Grünewald B, Haase A, Sandoz JC, Beye M. Multisite imaging of neural activity using a genetically encoded calcium sensor in the honey bee. PLoS Biol 2023; 21:e3001984. [PMID: 36719927 PMCID: PMC9917304 DOI: 10.1371/journal.pbio.3001984] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 02/10/2023] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Understanding of the neural bases for complex behaviors in Hymenoptera insect species has been limited by a lack of tools that allow measuring neuronal activity simultaneously in different brain regions. Here, we developed the first pan-neuronal genetic driver in a Hymenopteran model organism, the honey bee, and expressed the calcium indicator GCaMP6f under the control of the honey bee synapsin promoter. We show that GCaMP6f is widely expressed in the honey bee brain, allowing to record neural activity from multiple brain regions. To assess the power of this tool, we focused on the olfactory system, recording simultaneous responses from the antennal lobe, and from the more poorly investigated lateral horn (LH) and mushroom body (MB) calyces. Neural responses to 16 distinct odorants demonstrate that odorant quality (chemical structure) and quantity are faithfully encoded in the honey bee antennal lobe. In contrast, odor coding in the LH departs from this simple physico-chemical coding, supporting the role of this structure in coding the biological value of odorants. We further demonstrate robust neural responses to several bee pheromone odorants, key drivers of social behavior, in the LH. Combined, these brain recordings represent the first use of a neurogenetic tool for recording large-scale neural activity in a eusocial insect and will be of utility in assessing the neural underpinnings of olfactory and other sensory modalities and of social behaviors and cognitive abilities.
Collapse
Affiliation(s)
- Julie Carcaud
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
- * E-mail:
| | - Marianne Otte
- Evolutionnary Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bernd Grünewald
- Institut für Bienenkunde, Polytechnische Gesellschaft, FB Biowissenschaften, Goethe-University, Frankfurt am Main, Germany
| | - Albrecht Haase
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
| | - Martin Beye
- Evolutionnary Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Cholé H, Merlin A, Henderson N, Paupy E, Mahé P, Arnold G, Sandoz JC. Antenna movements as a function of odorants' biological value in honeybees (Apis mellifera L.). Sci Rep 2022; 12:11674. [PMID: 35804161 PMCID: PMC9270438 DOI: 10.1038/s41598-022-14354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
In honeybees, the antennae are highly mobile sensory organs that express scanning movements in various behavioral contexts and toward many stimuli, especially odorants. The rules underlying these movements are still unclear. Using a motion-capture system, we analyzed bees' antennal responses to a panel of pheromonal and other biologically relevant odorants. We observed clear differences in bees' antennal responses, with opposite movements to stimuli related to opposite contexts: slow backward movements were expressed in response to alarm pheromones, while fast forward movements were elicited by food related cues as well as brood and queen related pheromones. These responses are reproducible, as a similar pattern of odor-specific responses was observed in bees from different colonies, on different years. We then tested whether odorants' attractiveness for bees, measured using an original olfactory orientation setup, may predict antenna movements. This simple measure of odorants' valence did however not correlate with either antennal position or velocity measures, showing that more complex rules than simple hedonics underlie bees' antennal responses to odorants. Lastly, we show that newly-emerged bees express only limited antennal responses compared to older bees, suggesting that a significant part of the observed responses are acquired during bees' behavioral development.
Collapse
Affiliation(s)
- Hanna Cholé
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France.
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | - Alice Merlin
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Nicholas Henderson
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Estelle Paupy
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Prisca Mahé
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Gérard Arnold
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Sun X, Yue S, Mangan M. How the insect central complex could coordinate multimodal navigation. eLife 2021; 10:e73077. [PMID: 34882094 PMCID: PMC8741217 DOI: 10.7554/elife.73077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
The central complex of the insect midbrain is thought to coordinate insect guidance strategies. Computational models can account for specific behaviours, but their applicability across sensory and task domains remains untested. Here, we assess the capacity of our previous model (Sun et al. 2020) of visual navigation to generalise to olfactory navigation and its coordination with other guidance in flies and ants. We show that fundamental to this capacity is the use of a biologically plausible neural copy-and-shift mechanism that ensures sensory information is presented in a format compatible with the insect steering circuit regardless of its source. Moreover, the same mechanism is shown to allow the transfer cues from unstable/egocentric to stable/geocentric frames of reference, providing a first account of the mechanism by which foraging insects robustly recover from environmental disturbances. We propose that these circuits can be flexibly repurposed by different insect navigators to address their unique ecological needs.
Collapse
Affiliation(s)
- Xuelong Sun
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou UniversityGuangzhouChina
- Computational Intelligence Lab and L-CAS, School of Computer Science, University of LincolnLincolnUnited Kingdom
| | - Shigang Yue
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou UniversityGuangzhouChina
- Computational Intelligence Lab and L-CAS, School of Computer Science, University of LincolnLincolnUnited Kingdom
| | - Michael Mangan
- Sheffield Robotics, Department of Computer Science, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
12
|
Olfactory coding in the antennal lobe of the bumble bee Bombus terrestris. Sci Rep 2021; 11:10947. [PMID: 34040068 PMCID: PMC8154950 DOI: 10.1038/s41598-021-90400-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
Sociality is classified as one of the major transitions in evolution, with the largest number of eusocial species found in the insect order Hymenoptera, including the Apini (honey bees) and the Bombini (bumble bees). Bumble bees and honey bees not only differ in their social organization and foraging strategies, but comparative analyses of their genomes demonstrated that bumble bees have a slightly less diverse family of olfactory receptors than honey bees, suggesting that their olfactory abilities have adapted to different social and/or ecological conditions. However, unfortunately, no precise comparison of olfactory coding has been performed so far between honey bees and bumble bees, and little is known about the rules underlying olfactory coding in the bumble bee brain. In this study, we used in vivo calcium imaging to study olfactory coding of a panel of floral odorants in the antennal lobe of the bumble bee Bombus terrestris. Our results show that odorants induce reproducible neuronal activity in the bumble bee antennal lobe. Each odorant evokes a different glomerular activity pattern revealing this molecule's chemical structure, i.e. its carbon chain length and functional group. In addition, pairwise similarity among odor representations are conserved in bumble bees and honey bees. This study thus suggests that bumble bees, like honey bees, are equipped to respond to odorants according to their chemical features.
Collapse
|
13
|
Günzel Y, McCollum J, Paoli M, Galizia CG, Petelski I, Couzin-Fuchs E. Social modulation of individual preferences in cockroaches. iScience 2021; 24:101964. [PMID: 33437942 PMCID: PMC7788088 DOI: 10.1016/j.isci.2020.101964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
In social species, decision-making is both influenced by, and in turn influences, the social context. This reciprocal feedback introduces coupling across scales, from the neural basis of sensing, to individual and collective decision-making. Here, we adopt an integrative approach investigating decision-making in dynamical social contexts. When choosing shelters, isolated cockroaches prefer vanillin-scented (food-associated) shelters over unscented ones, yet in groups, this preference is inverted. We demonstrate that this inversion can be replicated by replacing the full social context with social odors: presented alone food and social odors are attractive, yet when presented as a mixture they are avoided. Via antennal lobe calcium imaging, we show that neural activity in vanillin-responsive regions reduces as social odor concentration increases. Thus, we suggest that the mixture is evaluated as a distinct olfactory object with opposite valence, providing a mechanism that would naturally result in individuals avoiding what they perceive as recently exploited resources.
Collapse
Affiliation(s)
- Yannick Günzel
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| | - Jaclyn McCollum
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Marco Paoli
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- CNRS, Research Centre for Animal Cognition, 31062 Toulouse Cedex 9, France
| | - C. Giovanni Galizia
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Inga Petelski
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| |
Collapse
|
14
|
Mariette J, Carcaud J, Sandoz JC. The neuroethology of olfactory sex communication in the honeybee Apis mellifera L. Cell Tissue Res 2021; 383:177-194. [PMID: 33447877 DOI: 10.1007/s00441-020-03401-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
The honeybee Apis mellifera L. is a crucial pollinator as well as a prominent scientific model organism, in particular for the neurobiological study of olfactory perception, learning, and memory. A wealth of information is indeed available about how the worker bee brain detects, processes, and learns about odorants. Comparatively, olfaction in males (the drones) and queens has received less attention, although they engage in a fascinating mating behavior that strongly relies on olfaction. Here, we present our current understanding of the molecules, cells, and circuits underlying bees' sexual communication. Mating in honeybees takes place at so-called drone congregation areas and places high in the air where thousands of drones gather and mate in dozens with virgin queens. One major queen-produced olfactory signal-9-ODA, the major component of the queen pheromone-has been known for decades to attract the drones. Since then, some of the neural pathways responsible for the processing of this pheromone have been unraveled. However, olfactory receptor expression as well as brain neuroanatomical data point to the existence of three additional major pathways in the drone brain, hinting at the existence of 4 major odorant cues involved in honeybee mating. We discuss current evidence about additional not only queen- but also drone-produced pheromonal signals possibly involved in bees' sexual behavior. We also examine data revealing recent evolutionary changes in drone's olfactory system in the Apis genus. Lastly, we present promising research avenues for progressing in our understanding of the neural basis of bees mating behavior.
Collapse
Affiliation(s)
- Julia Mariette
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
15
|
Abstract
With less than a million neurons, the western honeybee Apis mellifera is capable of complex olfactory behaviors and provides an ideal model for investigating the neurophysiology of the olfactory circuit and the basis of olfactory perception and learning. Here, we review the most fundamental aspects of honeybee's olfaction: first, we discuss which odorants dominate its environment, and how bees use them to communicate and regulate colony homeostasis; then, we describe the neuroanatomy and the neurophysiology of the olfactory circuit; finally, we explore the cellular and molecular mechanisms leading to olfactory memory formation. The vastity of histological, neurophysiological, and behavioral data collected during the last century, together with new technological advancements, including genetic tools, confirm the honeybee as an attractive research model for understanding olfactory coding and learning.
Collapse
Affiliation(s)
- Marco Paoli
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 31062, Toulouse, France.
| | - Giovanni C Galizia
- Department of Neuroscience, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
16
|
Lovegrove MR, Knapp RA, Duncan EJ, Dearden PK. Drosophila melanogaster and worker honeybees (Apis mellifera) do not require olfaction to be susceptible to honeybee queen mandibular pheromone. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104154. [PMID: 33039409 DOI: 10.1016/j.jinsphys.2020.104154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/23/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Eusociality is characterised by the reproductive division of labour; a dominant female (queen) or females are responsible for the majority of reproduction, and subordinate females are reproductively constrained. Reproductive constraint can be due to behavioural aggression and/or chemical cues, so-called queen pheromones, produced by the dominant females. In the honeybee, Apis mellifera, this repressive queen pheromone is queen mandibular pheromone (QMP). The mechanism by which honeybee workers are susceptible to QMP is not yet completely understood, however it is thought to be through olfaction via the antennae and/or gustation via trophallaxis. We have investigated whether olfaction is key to sensing of QMP, using both Drosophila melanogaster- a tractable non-eusocial insect which is also reproductively repressed by QMP- and the target species, A. mellifera worker honeybees. D. melanogaster are still capable of sensing and responding to QMP without their antenna and maxillary palps, and therefore without olfactory receptors. When worker honeybees were exposed to QMP but unable to physically interact with it, therefore required to use olfaction, they were similarly not reproductively repressed. Combined, these findings support either a non-olfactory based mechanism for the repression of reproduction via QMP, or redundancy via non-olfactory mechanisms in both D. melanogaster and A. mellifera. This study furthers our understanding of how species are susceptible to QMP, and provides insight into the mechanisms governing QMP responsiveness in these diverse species.
Collapse
Affiliation(s)
- M R Lovegrove
- Genomics Aotearoa and Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, Dunedin, New Zealand; School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - R A Knapp
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - E J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - P K Dearden
- Genomics Aotearoa and Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
17
|
Kadala A, Charreton M, Collet C. Flubendiamide, the first phthalic acid diamide insecticide, impairs neuronal calcium signalling in the honey bee's antennae. JOURNAL OF INSECT PHYSIOLOGY 2020; 125:104086. [PMID: 32628959 DOI: 10.1016/j.jinsphys.2020.104086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Calcium is an important intracellular second messenger involved in several processes such as the transduction of odour signals and neuronal excitability. Despite this critical role, relatively little information is available with respect to the impact of insecticides on the dynamics of intracellular calcium homeostasis in olfactory neurons. For the first time here, physiological stimuli (depolarizing current or pheromone) were shown to elicit calcium transients in peripheral neurons from the honey bee antenna. In addition, neurotoxic xenobiotics (the first synthetic phthalic diamide insecticide flubendiamide or botanical alkaloids ryanodine and caffeine) do interfere with normal calcium homeostasis. Our in vitro experiments show that these three xenobiotics can induce sustained abnormal calcium transients in antennal neurons. The present results provide a new insight into the toxicity of diamides, showing that flubendiamide drastically impairs calcium homeostasis in antennal neurons. We propose that a calcium imaging assay should provide an efficient tool dedicated to the modern assessment strategies of insecticides toxicity.
Collapse
Affiliation(s)
- Aklesso Kadala
- INRAE, UR406 Abeilles et Environnement, 84914 Avignon, France; UMT PRADE, Protection des Abeilles dans l'Environnement, 84914 Avignon, France
| | - Mercédès Charreton
- INRAE, UR406 Abeilles et Environnement, 84914 Avignon, France; UMT PRADE, Protection des Abeilles dans l'Environnement, 84914 Avignon, France
| | - Claude Collet
- INRAE, UR406 Abeilles et Environnement, 84914 Avignon, France; UMT PRADE, Protection des Abeilles dans l'Environnement, 84914 Avignon, France.
| |
Collapse
|
18
|
Morphology and physiology of olfactory neurons in the lateral protocerebrum of the silkmoth Bombyx mori. Sci Rep 2019; 9:16604. [PMID: 31719657 PMCID: PMC6851382 DOI: 10.1038/s41598-019-53318-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/26/2019] [Indexed: 12/04/2022] Open
Abstract
Insect olfaction is a suitable model to investigate sensory processing in the brain. Olfactory information is first processed in the antennal lobe and is then conveyed to two second-order centres—the mushroom body calyx and the lateral protocerebrum. Projection neurons processing sex pheromones and plant odours supply the delta area of the inferior lateral protocerebrum (∆ILPC) and lateral horn (LH), respectively. Here, we investigated the neurons arising from these regions in the brain of the silkmoth, Bombyx mori, using mass staining and intracellular recording with a sharp glass microelectrode. The output neurons from the ∆ILPC projected to the superior medial protocerebrum, whereas those from the LH projected to the superior lateral protocerebrum. The dendritic innervations of output neurons from the ∆ILPC formed a subdivision in the ∆ILPC. We discuss pathways for odour processing in higher order centres.
Collapse
|
19
|
Wang Z, Tan K. Honey Bee Alarm Pheromone Mediates Communication in Plant-Pollinator-Predator Interactions. INSECTS 2019; 10:insects10100366. [PMID: 31640201 PMCID: PMC6835895 DOI: 10.3390/insects10100366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022]
Abstract
Honey bees play a crucial role in pollination, and in performing this critical function, face numerous threats from predators and parasites during foraging and homing trips. Back in the nest, their defensive behavior drives some individuals to sacrifice themselves while fighting intruders with their stingers or mandibles. During these intense conflicts, bees release alarm pheromone to rapidly communicate with other nest mates about the present danger. However, we still know little about why and how alarm pheromone is used in plant–pollinator–predator interactions. Here, we review the history of previously detected bee alarm pheromones and the current state of the chemical analyses. More new components and functions have been confirmed in honey bee alarm pheromone. Then, we ask how important the alarm pheromones are in intra- and/or inter-species communication. Some plants even adopt mimicry systems to attract either the pollinators themselves or their predators for pollination via alarm pheromone. Pheromones are honest signals that evolved in one species and can be one of the main driving factors affecting co-evolution in plant–pollinator–predator interactions. Our review intends to stimulate new studies on the neuronal, molecular, behavioral, and evolutionary levels in order to understand how alarm pheromone mediates communication in plant–pollinator–predator interactions.
Collapse
Affiliation(s)
- Zhengwei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China.
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China.
| | - Ken Tan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China.
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China.
| |
Collapse
|
20
|
Eriksson M, Nylin S, Carlsson MA. Insect brain plasticity: effects of olfactory input on neuropil size. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190875. [PMID: 31598254 PMCID: PMC6731737 DOI: 10.1098/rsos.190875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Insect brains are known to express a high degree of experience-dependent structural plasticity. One brain structure in particular, the mushroom body (MB), has been attended to in numerous studies as it is implicated in complex cognitive processes such as olfactory learning and memory. It is, however, poorly understood to what extent sensory input per se affects the plasticity of the mushroom bodies. By performing unilateral blocking of olfactory input on immobilized butterflies, we were able to measure the effect of passive sensory input on the volumes of antennal lobes (ALs) and MB calyces. We showed that the primary and secondary olfactory neuropils respond in different ways to olfactory input. ALs show absolute experience-dependency and increase in volume only if receiving direct olfactory input from ipsilateral antennae, while MB calyx volumes were unaffected by the treatment and instead show absolute age-dependency in this regard. We therefore propose that cognitive processes related to behavioural expressions are needed in order for the calyx to show experience-dependent volumetric expansions. Our results indicate that such experience-dependent volumetric expansions of calyces observed in other studies may have been caused by cognitive processes rather than by sensory input, bringing some causative clarity to a complex neural phenomenon.
Collapse
|
21
|
Sehdev A, Szyszka P. Segregation of Unknown Odors From Mixtures Based on Stimulus Onset Asynchrony in Honey Bees. Front Behav Neurosci 2019; 13:155. [PMID: 31354447 PMCID: PMC6639674 DOI: 10.3389/fnbeh.2019.00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/25/2019] [Indexed: 01/14/2023] Open
Abstract
Animals use olfaction to search for distant objects. Unlike vision, where objects are spaced out, olfactory information mixes when it reaches olfactory organs. Therefore, efficient olfactory search requires segregating odors that are mixed with background odors. Animals can segregate known odors by detecting short differences in the arrival of mixed odorants (stimulus onset asynchrony). However, it is unclear whether animals can also use stimulus onset asynchrony to segregate odorants that they had no previous experience with and which have no innate or learned relevance (unknown odorants). Using behavioral experiments in honey bees, we here show that stimulus onset asynchrony also improves segregation of those unknown odorants. The stimulus onset asynchrony necessary to segregate unknown odorants is in the range of seconds, which is two orders of magnitude larger than the previously reported stimulus asynchrony sufficient for segregating known odorants. We propose that for unknown odorants, segregating odorant A from a mixture with B requires sensory adaptation to B.
Collapse
Affiliation(s)
- Aarti Sehdev
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
| | - Paul Szyszka
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Olfactory Object Recognition Based on Fine-Scale Stimulus Timing in Drosophila. iScience 2019; 13:113-124. [PMID: 30826726 PMCID: PMC6402261 DOI: 10.1016/j.isci.2019.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/09/2019] [Accepted: 02/12/2019] [Indexed: 01/31/2023] Open
Abstract
Odorants of behaviorally relevant objects (e.g., food sources) intermingle with those from other sources. Therefore to determine whether an odor source is good or bad—without actually visiting it—animals first need to segregate the odorants from different sources. To do so, animals could use temporal stimulus cues, because odorants from one source exhibit correlated fluctuations, whereas odorants from different sources are less correlated. However, the behaviorally relevant timescales of temporal stimulus cues for odor source segregation remain unclear. Using behavioral experiments with free-flying flies, we show that (1) odorant onset asynchrony increases flies' attraction to a mixture of two odorants with opposing innate or learned valence and (2) attraction does not increase when the attractive odorant arrives first. These data suggest that flies can use stimulus onset asynchrony for odor source segregation and imply temporally precise neural mechanisms for encoding odors and for segregating them into distinct objects. Flies can detect whether two mixed odorants arrive synchronously or asynchronously This temporal sensitivity occurs for odorants with innate and learned valences Flies' behavior suggests use of odor onset asynchrony for odor source segregation
Collapse
|
23
|
Nouvian M, Mandal S, Jamme C, Claudianos C, d'Ettorre P, Reinhard J, Barron AB, Giurfa M. Cooperative defence operates by social modulation of biogenic amine levels in the honey bee brain. Proc Biol Sci 2019; 285:rspb.2017.2653. [PMID: 29367399 DOI: 10.1098/rspb.2017.2653] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022] Open
Abstract
The defence of a society often requires that some specialized members coordinate to repel a threat at personal risk. This is especially true for honey bee guards, which defend the hive and may sacrifice their lives upon stinging. Central to this cooperative defensive response is the sting alarm pheromone, which has isoamyl acetate (IAA) as its main component. Although this defensive behaviour has been well described, the neural mechanisms triggered by IAA to coordinate stinging have long remained unknown. Here we show that IAA upregulates brain levels of serotonin and dopamine, thereby increasing the likelihood of an individual bee to attack and sting. Pharmacological enhancement of the levels of both amines induces higher defensive responsiveness, while decreasing them via antagonists decreases stinging. Our results thus uncover the neural mechanism by which an alarm pheromone recruits individuals to attack and repel a threat, and suggest that the alarm pheromone of honey bees acts on their response threshold rather than as a direct trigger.
Collapse
Affiliation(s)
- Morgane Nouvian
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université́ de Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France .,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Souvik Mandal
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université́ de Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France
| | - Charlène Jamme
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université́ de Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France
| | - Charles Claudianos
- School of Psychological Sciences, Monash University, Melbourne, Victoria 3600, Australia
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, University of Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse, France
| | - Judith Reinhard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université́ de Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université́ de Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France
| |
Collapse
|
24
|
von Hadeln J, Althaus V, Häger L, Homberg U. Anatomical organization of the cerebrum of the desert locust Schistocerca gregaria. Cell Tissue Res 2018; 374:39-62. [DOI: 10.1007/s00441-018-2844-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 04/17/2018] [Indexed: 11/27/2022]
|
25
|
Rossi N, d'Ettorre P, Giurfa M. Pheromones modulate responsiveness to a noxious stimulus in honey bees. ACTA ACUST UNITED AC 2018; 221:jeb.172270. [PMID: 29378816 DOI: 10.1242/jeb.172270] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/19/2018] [Indexed: 11/20/2022]
Abstract
Pheromones are chemical substances released into the environment by an individual, which trigger stereotyped behaviors and/or physiological processes in individuals of the same species. Yet, a novel hypothesis has suggested that pheromones not only elicit innate responses but also contribute to behavioral plasticity by affecting the subjective evaluation of appetitive or aversive stimuli. To test this hypothesis, we exposed bees to three pheromonal components whose valence was either negative (i.e. associated with aversive events: isopentyl acetate and 2-heptanone) or positive (i.e. associated with appetitive events: geraniol). We then determined the effect of this exposure on the subjective evaluation of aversive stimuli by quantifying responsiveness to a series of increasing electric shock voltages before and after exposure. Two experiments were conducted varying the time lapse between shock series (15 min in experiment 1, and 24 h in experiment 2). In experiment 1, we observed a general decrease of shock responsiveness caused by fatigue, due to the short lapse of time between the two series of shocks. This decrease could only be counteracted by isopentyl acetate. The enhancing effect of isopentyl acetate on shock responsiveness was also found in experiment 2. Conversely, geraniol decreased aversive responsiveness in this experiment; 2-heptanone did not affect aversive responsiveness in any experiment. Overall, our results demonstrate that certain pheromones modulate the salience of aversive stimuli according to their valence. In this way, they would affect the motivation to engage in aversive responses, thus acting as modulators of behavioral plasticity.
Collapse
Affiliation(s)
- Natacha Rossi
- Research Center on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, University of Paris 13, Sorbonne Paris Cité, 99 avenue J.-B. Clément, Villetaneuse, France
| | - Martin Giurfa
- Research Center on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| |
Collapse
|
26
|
Pheromones modulate reward responsiveness and non-associative learning in honey bees. Sci Rep 2017; 7:9875. [PMID: 28852036 PMCID: PMC5574997 DOI: 10.1038/s41598-017-10113-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/31/2017] [Indexed: 11/08/2022] Open
Abstract
Pheromones are chemical messengers that trigger stereotyped behaviors and/or physiological processes in individuals of the same species. Recent reports suggest that pheromones can modulate behaviors not directly related to the pheromonal message itself and contribute, in this way, to behavioral plasticity. We tested this hypothesis by studying the effect of pheromones on sucrose responsiveness and habituation in honey bees. We exposed workers to three pheromone components: geraniol, which in nature is used in an appetitive context, and isopentyl acetate (IPA) and 2-heptanone (2H), which signal aversive situations. Pheromones associated with an aversive context induced a significant decrease of sucrose responsiveness as 40% and 60% of bees exposed to IPA and 2H, respectively, did not respond to any sucrose concentration. In bees that responded to sucrose, geraniol enhanced sucrose responsiveness while 2H, but not IPA, had the opposite effect. Geraniol and IPA had no effect on habituation while 2H induced faster habituation than controls. Overall, our results demonstrate that pheromones modulate reward responsiveness and to a lower degree habituation. Through their effect on sucrose responsiveness they could also affect appetitive associative learning. Thus, besides conveying stereotyped messages, pheromones may contribute to individual and colony-level plasticity by modulating motivational state and learning performances.
Collapse
|
27
|
Nouvian M, Reinhard J, Giurfa M. The defensive response of the honeybee Apis mellifera. ACTA ACUST UNITED AC 2017; 219:3505-3517. [PMID: 27852760 DOI: 10.1242/jeb.143016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Honeybees (Apis mellifera) are insects living in colonies with a complex social organization. Their nest contains food stores in the form of honey and pollen, as well as the brood, the queen and the bees themselves. These resources have to be defended against a wide range of predators and parasites, a task that is performed by specialized workers, called guard bees. Guards tune their response to both the nature of the threat and the environmental conditions, in order to achieve an efficient trade-off between defence and loss of foraging workforce. By releasing alarm pheromones, they are able to recruit other bees to help them handle large predators. These chemicals trigger both rapid and longer-term changes in the behaviour of nearby bees, thus priming them for defence. Here, we review our current understanding on how this sequence of events is performed and regulated depending on a variety of factors that are both extrinsic and intrinsic to the colony. We present our current knowledge on the neural bases of honeybee aggression and highlight research avenues for future studies in this area. We present a brief overview of the techniques used to study honeybee aggression, and discuss how these could be used to gain further insights into the mechanisms of this behaviour.
Collapse
Affiliation(s)
- Morgane Nouvian
- Queensland Brain Institute, the University of Queensland, Brisbane, Queensland 4072, Australia .,Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse cedex 9, 31062, France
| | - Judith Reinhard
- Queensland Brain Institute, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse cedex 9, 31062, France
| |
Collapse
|
28
|
MaBouDi H, Shimazaki H, Giurfa M, Chittka L. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities. PLoS Comput Biol 2017. [PMID: 28640825 PMCID: PMC5480824 DOI: 10.1371/journal.pcbi.1005551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons' outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several-but not all-types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life.
Collapse
Affiliation(s)
- HaDi MaBouDi
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Schultzhaus JN, Saleem S, Iftikhar H, Carney GE. The role of the Drosophila lateral horn in olfactory information processing and behavioral response. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:29-37. [PMID: 27871975 DOI: 10.1016/j.jinsphys.2016.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Animals must rapidly and accurately process environmental information to produce the correct behavioral responses. Reactions to previously encountered as well as to novel but biologically important stimuli are equally important, and one understudied region in the insect brain plays a role in processing both types of stimuli. The lateral horn is a higher order processing center that mainly processes olfactory information and is linked via olfactory projection neurons to another higher order learning center, the mushroom body. This review focuses on the lateral horn of Drosophila where most functional studies have been performed. We discuss connectivity between the primary olfactory center, the antennal lobe, and the lateral horn and mushroom body. We also present evidence for the lateral horn playing roles in innate behavioral responses by encoding biological valence to novel odor cues and in learned responses to previously encountered odors by modulating neural activity within the mushroom body. We describe how these processes contribute to acceptance or avoidance of appropriate or inappropriate mates and food, as well as the identification of predators. The lateral horn is a sexually dimorphic and plastic region of the brain that modulates other regions of the brain to ensure that insects produce rapid and effective behavioral responses to both novel and learned stimuli, yet multiple gaps exist in our knowledge of this important center. We anticipate that future studies on olfactory processing, learning, and innate behavioral responses will include the lateral horn in their examinations, leading to a more comprehensive understanding of olfactory information relay and resulting behaviors.
Collapse
Affiliation(s)
- Janna N Schultzhaus
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Sehresh Saleem
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Hina Iftikhar
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Ginger E Carney
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States.
| |
Collapse
|
30
|
Mota T, Kreissl S, Carrasco Durán A, Lefer D, Galizia G, Giurfa M. Synaptic Organization of Microglomerular Clusters in the Lateral and Medial Bulbs of the Honeybee Brain. Front Neuroanat 2016; 10:103. [PMID: 27847468 PMCID: PMC5088189 DOI: 10.3389/fnana.2016.00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
The honeybee Apis mellifera is an established model for the study of visual orientation. Yet, research on this topic has focused on behavioral aspects and has neglected the investigation of the underlying neural architectures in the bee brain. In other insects, the anterior optic tubercle (AOTU), the lateral (LX) and the central complex (CX) are important brain regions for visuospatial performances. In the central brain of the honeybee, a prominent group of neurons connecting the AOTU with conspicuous microglomerular synaptic structures in the LX has been recently identified, but their neural organization and ultrastructure have not been investigated. Here we characterized these microglomerular structures by means of immunohistochemical and ultrastructural analyses, in order to evaluate neurotransmission and synaptic organization. Three-dimensional reconstructions of the pre-synaptic and post-synaptic microglomerular regions were performed based on confocal microscopy. Each pre-synaptic region appears as a large cup-shaped profile that embraces numerous post-synaptic profiles of GABAergic tangential neurons connecting the LX to the CX. We also identified serotonergic broad field neurons that probably provide modulatory input from the CX to the synaptic microglomeruli in the LX. Two distinct clusters of microglomerular structures were identified in the lateral bulb (LBU) and medial bulb (MBU) of the LX. Although the ultrastructure of both clusters is very similar, we found differences in the number of microglomeruli and in the volume of the pre-synaptic profiles of each cluster. We discuss the possible role of these microglomerular clusters in the visuospatial behavior of honeybees and propose research avenues for studying their neural plasticity and synaptic function.
Collapse
Affiliation(s)
- Theo Mota
- Department of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
- Research Center on Animal Cognition, Université de ToulouseToulouse, France
- Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| | - Sabine Kreissl
- Department of Neurobiology, University of KonstanzKonstanz, Germany
| | - Ana Carrasco Durán
- Research Center on Animal Cognition, Université de ToulouseToulouse, France
- Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| | - Damien Lefer
- Research Center on Animal Cognition, Université de ToulouseToulouse, France
- Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| | - Giovanni Galizia
- Department of Neurobiology, University of KonstanzKonstanz, Germany
| | - Martin Giurfa
- Research Center on Animal Cognition, Université de ToulouseToulouse, France
- Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| |
Collapse
|
31
|
Zwaka H, Münch D, Manz G, Menzel R, Rybak J. The Circuitry of Olfactory Projection Neurons in the Brain of the Honeybee, Apis mellifera. Front Neuroanat 2016; 10:90. [PMID: 27746723 PMCID: PMC5040750 DOI: 10.3389/fnana.2016.00090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
In the honeybee brain, two prominent tracts - the medial and the lateral antennal lobe tract - project from the primary olfactory center, the antennal lobes (ALs), to the central brain, the mushroom bodies (MBs), and the protocerebral lobe (PL). Intracellularly stained uniglomerular projection neurons were reconstructed, registered to the 3D honeybee standard brain atlas, and then used to derive the spatial properties and quantitative morphology of the neurons of both tracts. We evaluated putative synaptic contacts of projection neurons (PNs) using confocal microscopy. Analysis of the patterns of axon terminals revealed a domain-like innervation within the MB lip neuropil. PNs of the lateral tract arborized more sparsely within the lips and exhibited fewer synaptic boutons, while medial tract neurons occupied broader regions in the MB calyces and the PL. Our data show that uPNs from the medial and lateral tract innervate both the core and the cortex of the ipsilateral MB lip but differ in their innervation patterns in these regions. In the mushroombody neuropil collar we found evidence for ALT boutons suggesting the collar as a multi modal input site including olfactory input similar to lip and basal ring. In addition, our data support the conclusion drawn in previous studies that reciprocal synapses exist between PNs, octopaminergic-, and GABAergic cells in the MB calyces. For the first time, we found evidence for connections between both tracts within the AL.
Collapse
Affiliation(s)
- Hanna Zwaka
- Institute of Neurobiology, Free University BerlinBerlin, Germany; Abteilung Genetik von Lernen und Gedächtnis, Leibniz Institut für NeurobiologieMagdeburg, Germany
| | - Daniel Münch
- Neurobiology, University of Konstanz Konstanz, Germany
| | - Gisela Manz
- Institute of Neurobiology, Free University Berlin Berlin, Germany
| | - Randolf Menzel
- Institute of Neurobiology, Free University BerlinBerlin, Germany; Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| |
Collapse
|
32
|
Perez M, Nowotny T, d'Ettorre P, Giurfa M. Olfactory experience shapes the evaluation of odour similarity in ants: a behavioural and computational analysis. Proc Biol Sci 2016; 283:20160551. [PMID: 27581883 PMCID: PMC5013785 DOI: 10.1098/rspb.2016.0551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/12/2016] [Indexed: 11/26/2022] Open
Abstract
Perceptual similarity between stimuli is often assessed via generalization, the response to stimuli that are similar to the one which was previously conditioned. Although conditioning procedures are variable, studies on how this variation may affect perceptual similarity remain scarce. Here, we use a combination of behavioural and computational analyses to investigate the influence of olfactory conditioning procedures on odour generalization in ants. Insects were trained following either absolute conditioning, in which a single odour (an aldehyde) was rewarded with sucrose, or differential conditioning, in which one odour (the same aldehyde) was similarly rewarded and another odour (an aldehyde differing in carbon-chain length) was punished with quinine. The response to the trained odours and generalization to other aldehydes were assessed. We show that olfactory similarity, rather than being immutable, varies with the conditioning procedure. Compared with absolute conditioning, differential conditioning enhances olfactory discrimination. This improvement is best described by a multiplicative interaction between two independent processes, the excitatory and inhibitory generalization gradients induced by the rewarded and the punished odour, respectively. We show that olfactory similarity is dramatically shaped by an individual's perceptual experience and suggest a new hypothesis for the nature of stimulus interactions underlying experience-dependent changes in perceptual similarity.
Collapse
Affiliation(s)
- Margot Perez
- Laboratory of Experimental and Comparative Ethology (LEEC), University Paris 13, Sorbonne Paris Cité, Villetaneuse, France Centre National de la Recherche Scientifique (CNRS), Research Centre on Animal Cognition (UMR5169), Toulouse, France Research Centre on Animal Cognition (UMR5169), University Paul-Sabatier, Toulouse, France
| | - Thomas Nowotny
- Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex, Brighton, UK
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology (LEEC), University Paris 13, Sorbonne Paris Cité, Villetaneuse, France Centre National de la Recherche Scientifique (CNRS), Research Centre on Animal Cognition (UMR5169), Toulouse, France Research Centre on Animal Cognition (UMR5169), University Paul-Sabatier, Toulouse, France
| | - Martin Giurfa
- Centre National de la Recherche Scientifique (CNRS), Research Centre on Animal Cognition (UMR5169), Toulouse, France Research Centre on Animal Cognition (UMR5169), University Paul-Sabatier, Toulouse, France
| |
Collapse
|
33
|
Hambäck PA. Getting the smell of it--odour cues structure pollinator networks. J Anim Ecol 2016; 85:315-7. [PMID: 26899420 DOI: 10.1111/1365-2656.12454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 11/28/2022]
Abstract
Floral visitors vary greatly among plant species and depend on the volatiles emitted by the flowers. Creeping thistle is normally visited by bees and bumblebees while common yarrow is rather visited by flies. Manipulating the flower volatiles caused pollinator communities to become more similar among the two plant species. Image credit: Robert Junker and Anna-Amelie Larue. In Focus: Larue, A.-A.C., Raguso, R.A. & Junker, R.R. (2015) Experimental manipulation of floral scent bouquets restructures flower-visitor interactions in the field. Journal of Animal Ecology, 85, 396-408. Pollinators use multiple cues to locate suitable flowers, and recent studies argue that flower volatiles are more important than previously believed. However, the role of volatiles is seldom separated from other cues. Larue, Raguso & Junker (2015) manipulated the volatile profile of two plants that are normally visited by different pollinators. Achillea millefolium is normally not visited by honeybees and bumblebees, but these pollinator groups did visit plants that were sprayed with volatiles from Cirsium arvense. Cirsium arvense, on the other hand, was less visited by honeybees and bumblebees when sprayed with volatiles from A. millefolium. These findings highlight the potential role of volatiles in structuring pollinator communities on plants.
Collapse
Affiliation(s)
- Peter A Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
34
|
Synergism and Combinatorial Coding for Binary Odor Mixture Perception in Drosophila. eNeuro 2016; 3:eN-NWR-0056-14. [PMID: 27588303 PMCID: PMC4994066 DOI: 10.1523/eneuro.0056-14.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 07/25/2016] [Accepted: 08/03/2016] [Indexed: 11/21/2022] Open
Abstract
Most odors in the natural environment are mixtures of several compounds. Olfactory receptors housed in the olfactory sensory neurons detect these odors and transmit the information to the brain, leading to decision-making. But whether the olfactory system detects the ingredients of a mixture separately or treats mixtures as different entities is not well understood. Using Drosophila melanogaster as a model system, we have demonstrated that fruit flies perceive binary odor mixtures in a manner that is heavily dependent on both the proportion and the degree of dilution of the components, suggesting a combinatorial coding at the peripheral level. This coding strategy appears to be receptor specific and is independent of interneuronal interactions.
Collapse
|
35
|
Reisenman CE, Lei H, Guerenstein PG. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Front Physiol 2016; 7:271. [PMID: 27445858 PMCID: PMC4928593 DOI: 10.3389/fphys.2016.00271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, BerkeleyBerkeley, CA, USA
| | - Hong Lei
- Department of Neuroscience, University of ArizonaTucson, AZ, USA
| | - Pablo G. Guerenstein
- Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICETDiamante, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre RíosOro Verde, Argentina
| |
Collapse
|
36
|
Neural substrate for higher-order learning in an insect: Mushroom bodies are necessary for configural discriminations. Proc Natl Acad Sci U S A 2015; 112:E5854-62. [PMID: 26460021 DOI: 10.1073/pnas.1508422112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Learning theories distinguish elemental from configural learning based on their different complexity. Although the former relies on simple and unambiguous links between the learned events, the latter deals with ambiguous discriminations in which conjunctive representations of events are learned as being different from their elements. In mammals, configural learning is mediated by brain areas that are either dispensable or partially involved in elemental learning. We studied whether the insect brain follows the same principles and addressed this question in the honey bee, the only insect in which configural learning has been demonstrated. We used a combination of conditioning protocols, disruption of neural activity, and optophysiological recording of olfactory circuits in the bee brain to determine whether mushroom bodies (MBs), brain structures that are essential for memory storage and retrieval, are equally necessary for configural and elemental olfactory learning. We show that bees with anesthetized MBs distinguish odors and learn elemental olfactory discriminations but not configural ones, such as positive and negative patterning. Inhibition of GABAergic signaling in the MB calyces, but not in the lobes, impairs patterning discrimination, thus suggesting a requirement of GABAergic feedback neurons from the lobes to the calyces for nonelemental learning. These results uncover a previously unidentified role for MBs besides memory storage and retrieval: namely, their implication in the acquisition of ambiguous discrimination problems. Thus, in insects as in mammals, specific brain regions are recruited when the ambiguity of learning tasks increases, a fact that reveals similarities in the neural processes underlying the elucidation of ambiguous tasks across species.
Collapse
|
37
|
Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris. PLoS One 2015; 10:e0137413. [PMID: 26340263 PMCID: PMC4560401 DOI: 10.1371/journal.pone.0137413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
To trigger innate behavior, sensory neural networks are pre-tuned to extract biologically relevant stimuli. Many male-female or insect-plant interactions depend on this phenomenon. Especially communication among individuals within social groups depends on innate behaviors. One example is the efficient recruitment of nest mates by successful bumblebee foragers. Returning foragers release a recruitment pheromone in the nest while they perform a ‘dance’ behavior to activate unemployed nest mates. A major component of this pheromone is the sesquiterpenoid farnesol. How farnesol is processed and perceived by the olfactory system, has not yet been identified. It is much likely that processing farnesol involves an innate mechanism for the extraction of relevant information to trigger a fast and reliable behavioral response. To test this hypothesis, we used population response analyses of 100 antennal lobe (AL) neurons recorded in alive bumblebee workers under repeated stimulation with four behaviorally different, but chemically related odorants (geraniol, citronellol, citronellal and farnesol). The analysis identified a unique neural representation of the recruitment pheromone component compared to the other odorants that are predominantly emitted by flowers. The farnesol induced population activity in the AL allowed a reliable separation of farnesol from all other chemically related odor stimuli we tested. We conclude that the farnesol induced population activity may reflect a predetermined representation within the AL-neural network allowing efficient and fast extraction of a behaviorally relevant stimulus. Furthermore, the results show that population response analyses of multiple single AL-units may provide a powerful tool to identify distinct representations of behaviorally relevant odors.
Collapse
|
38
|
Brill MF, Meyer A, Rössler W. It takes two-coincidence coding within the dual olfactory pathway of the honeybee. Front Physiol 2015; 6:208. [PMID: 26283968 PMCID: PMC4516877 DOI: 10.3389/fphys.2015.00208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/10/2015] [Indexed: 11/23/2022] Open
Abstract
To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).
Collapse
Affiliation(s)
- Martin F. Brill
- *Correspondence: Martin F. Brill, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York, NY 11724, USA
| | | | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology, Biozentrum, University of WürzburgWürzburg, Germany
| |
Collapse
|
39
|
Yew JY, Chung H. Insect pheromones: An overview of function, form, and discovery. Prog Lipid Res 2015; 59:88-105. [DOI: 10.1016/j.plipres.2015.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 05/01/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022]
|
40
|
Shankar S, Chua JY, Tan KJ, Calvert MEK, Weng R, Ng WC, Mori K, Yew JY. The neuropeptide tachykinin is essential for pheromone detection in a gustatory neural circuit. eLife 2015; 4:e06914. [PMID: 26083710 PMCID: PMC4491540 DOI: 10.7554/elife.06914] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/16/2015] [Indexed: 11/13/2022] Open
Abstract
Gustatory pheromones play an essential role in shaping the behavior of many organisms. However, little is known about the processing of taste pheromones in higher order brain centers. Here, we describe a male-specific gustatory circuit in Drosophila that underlies the detection of the anti-aphrodisiac pheromone (3R,11Z,19Z)-3-acetoxy-11,19-octacosadien-1-ol (CH503). Using behavioral analysis, genetic manipulation, and live calcium imaging, we show that Gr68a-expressing neurons on the forelegs of male flies exhibit a sexually dimorphic physiological response to the pheromone and relay information to the central brain via peptidergic neurons. The release of tachykinin from 8 to 10 cells within the subesophageal zone is required for the pheromone-triggered courtship suppression. Taken together, this work describes a neuropeptide-modulated central brain circuit that underlies the programmed behavioral response to a gustatory sex pheromone. These results will allow further examination of the molecular basis by which innate behaviors are modulated by gustatory cues and physiological state.
Collapse
Affiliation(s)
| | - Jia Yi Chua
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Kah Junn Tan
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | | | - Ruifen Weng
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Wan Chin Ng
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Kenji Mori
- Photosensitive Materials Research Center, Toyo Gosei Co., Ltd, Chiba, Japan
| | - Joanne Y Yew
- Temasek Life Sciences Laboratory, Singapore, Singapore
| |
Collapse
|
41
|
Differential combinatorial coding of pheromones in two olfactory subsystems of the honey bee brain. J Neurosci 2015; 35:4157-67. [PMID: 25762663 DOI: 10.1523/jneurosci.0734-14.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural coding of pheromones has been intensively studied in insects with a particular focus on sex pheromones. These studies favored the view that pheromone compounds are processed within specific antennal lobe glomeruli following a specialized labeled-line system. However, pheromones play crucial roles in an insect's life beyond sexual attraction, and some species use many different pheromones making such a labeled-line organization unrealistic. A combinatorial coding scheme, in which each component activates a set of broadly tuned units, appears more adapted in this case. However, this idea has not been tested thoroughly. We focused here on the honey bee Apis mellifera, a social insect that relies on a wide range of pheromones to ensure colony cohesion. Interestingly, the honey bee olfactory system harbors two central parallel pathways, whose functions remain largely unknown. Using optophysiological recordings of projection neurons, we compared the responses of these two pathways to 27 known honey bee pheromonal compounds emitted by the brood, the workers, and the queen. We show that while queen mandibular pheromone is processed by l-ALT (lateral antennal lobe tract) neurons and brood pheromone is mainly processed by m-ALT (median antennal lobe tract) neurons, worker pheromones induce redundant activity in both pathways. Moreover, all tested pheromonal compounds induce combinatorial activity from several AL glomeruli. These findings support the combinatorial coding scheme and suggest that higher-order brain centers reading out these combinatorial activity patterns may eventually classify olfactory signals according to their biological meaning.
Collapse
|
42
|
Carrasco D, Larsson MC, Anderson P. Insect host plant selection in complex environments. CURRENT OPINION IN INSECT SCIENCE 2015; 8:1-7. [PMID: 32846657 DOI: 10.1016/j.cois.2015.01.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 06/11/2023]
Abstract
Selection of suitable host plants is essential for the development and survival of herbivorous insects. Here we address behavioural mechanisms and the role of olfactory cues governing host choice, and their adaptive significance in complicated ecological contexts, with a focus on polyphagous insects. We also consider how recent developments in the study of olfactory systems of insects can provide a functional description of physiological mechanisms behind host plant choice. This may apply from the broader evolutionary history and local adaptations of olfactory receptor genes, to the underlying neural mechanisms behind innate host preferences and experience-based plasticity in host plant choice.
Collapse
Affiliation(s)
- David Carrasco
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE 230 53 Alnarp, Sweden.
| | - Mattias C Larsson
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE 230 53 Alnarp, Sweden
| | - Peter Anderson
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE 230 53 Alnarp, Sweden
| |
Collapse
|
43
|
Strutz A, Soelter J, Baschwitz A, Farhan A, Grabe V, Rybak J, Knaden M, Schmuker M, Hansson BS, Sachse S. Decoding odor quality and intensity in the Drosophila brain. eLife 2014; 3:e04147. [PMID: 25512254 PMCID: PMC4270039 DOI: 10.7554/elife.04147] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/09/2014] [Indexed: 12/12/2022] Open
Abstract
To internally reflect the sensory environment, animals create neural maps encoding the external stimulus space. From that primary neural code relevant information has to be extracted for accurate navigation. We analyzed how different odor features such as hedonic valence and intensity are functionally integrated in the lateral horn (LH) of the vinegar fly, Drosophila melanogaster. We characterized an olfactory-processing pathway, comprised of inhibitory projection neurons (iPNs) that target the LH exclusively, at morphological, functional and behavioral levels. We demonstrate that iPNs are subdivided into two morphological groups encoding positive hedonic valence or intensity information and conveying these features into separate domains in the LH. Silencing iPNs severely diminished flies' attraction behavior. Moreover, functional imaging disclosed a LH region tuned to repulsive odors comprised exclusively of third-order neurons. We provide evidence for a feature-based map in the LH, and elucidate its role as the center for integrating behaviorally relevant olfactory information. DOI:http://dx.doi.org/10.7554/eLife.04147.001 Organisms need to sense and adapt to their environment in order to survive. Senses such as vision and smell allow an organism to absorb information about the external environment and translate it into a meaningful internal image. This internal image helps the organism to remember incidents and act accordingly when they encounter similar situations again. A typical example is when organisms are repeatedly attracted to odors that are essential for survival, such as food and pheromones, and are repulsed by odors that threaten survival. Strutz et al. addressed how attractiveness or repulsiveness of a smell, and also the strength of a smell, are processed by a part of the olfactory system called the lateral horn in fruit flies. This involved mapping the neuronal patterns that were generated in the lateral horn when a fly was exposed to particular odors. Strutz et al. found that a subset of neurons called inhibitory projection neurons processes information about whether the odor is attractive or repulsive, and that a second subset of these neurons process information about the intensity of the odor. Other insects, such as honey bees and hawk moths, have olfactory systems with a similar architecture and might also employ a similar spatial approach to encode information regarding the intensity and identity of odors. Locusts, on the other hand, employ a temporal approach to encoding information about odors. The work of Strutz et al. shows that certain qualities of odors are contained in a spatial map in a specific brain region of the fly. This opens up the question of how the information in this spatial map influences decisions made by the fly. DOI:http://dx.doi.org/10.7554/eLife.04147.002
Collapse
Affiliation(s)
- Antonia Strutz
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jan Soelter
- Department for Biology, Pharmacy and Chemistry, Free University Berlin, Neuroinformatics and Theoretical Neuroscience, Berlin, Germany
| | - Amelie Baschwitz
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Abu Farhan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Schmuker
- Department for Biology, Pharmacy and Chemistry, Free University Berlin, Neuroinformatics and Theoretical Neuroscience, Berlin, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
44
|
Neural Mechanisms and Information Processing in Recognition Systems. INSECTS 2014; 5:722-41. [PMID: 26462936 PMCID: PMC4592617 DOI: 10.3390/insects5040722] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/06/2014] [Accepted: 09/16/2014] [Indexed: 11/17/2022]
Abstract
Nestmate recognition is a hallmark of social insects. It is based on the match/mismatch of an identity signal carried by members of the society with that of the perceiving individual. While the behavioral response, amicable or aggressive, is very clear, the neural systems underlying recognition are not fully understood. Here we contrast two alternative hypotheses for the neural mechanisms that are responsible for the perception and information processing in recognition. We focus on recognition via chemical signals, as the common modality in social insects. The first, classical, hypothesis states that upon perception of recognition cues by the sensory system the information is passed as is to the antennal lobes and to higher brain centers where the information is deciphered and compared to a neural template. Match or mismatch information is then transferred to some behavior-generating centers where the appropriate response is elicited. An alternative hypothesis, that of “pre-filter mechanism”, posits that the decision as to whether to pass on the information to the central nervous system takes place in the peripheral sensory system. We suggest that, through sensory adaptation, only alien signals are passed on to the brain, specifically to an “aggressive-behavior-switching center”, where the response is generated if the signal is above a certain threshold.
Collapse
|