1
|
Yoshikawa S, Tang P, Simpson JH. Mechanosensory and command contributions to the Drosophila grooming sequence. Curr Biol 2024; 34:2066-2076.e3. [PMID: 38657610 PMCID: PMC11179149 DOI: 10.1016/j.cub.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Flies groom in response to competing mechanosensory cues in an anterior-to-posterior order using specific legs. From behavior screens, we identified a pair of cholinergic command-like neurons, Mago-no-Te (MGT), whose optogenetic activation elicits thoracic grooming by the back legs. Thoracic grooming is typically composed of body sweeps and leg rubs in alternation, but clonal analysis coupled with amputation experiments revealed that MGT activation only commands the body sweeps: initiation of leg rubbing requires contact between the leg and thorax. With new electron microscopy (EM) connectome data for the ventral nerve cord (VNC), we uncovered a circuit-based explanation for why stimulation of posterior thoracic mechanosensory bristles initiates cleaning by the back legs. Our previous work showed that flies weigh mechanosensory inputs across the body to select which part to groom, but we did not know why the thorax was always cleaned last. Here, the connectome for the VNC enabled us to identify a pair of GABAergic inhibitory neurons, UMGT1, that receives diverse sensory inputs and synapses onto both MGT and components of its downstream circuits. Optogenetic activation of UMGT1 suppresses thoracic cleaning, representing a mechanism by which mechanosensory stimuli on other body parts could take precedence in the grooming hierarchy. We also anatomically mapped the pre-motor circuit downstream of MGT, including inhibitory feedback connections that may enable rhythmicity and coordination of limb movement during thoracic grooming. The combination of behavioral screens and connectome analysis allowed us to identify a neural circuit connecting sensory-to-motor neurons that contributes to thoracic grooming.
Collapse
Affiliation(s)
- Shingo Yoshikawa
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Paul Tang
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julie H Simpson
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
2
|
Yoshikawa S, Tang P, Simpson JH. Mechanosensory and command contributions to the Drosophila grooming sequence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567707. [PMID: 38045358 PMCID: PMC10690200 DOI: 10.1101/2023.11.19.567707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Flies groom in response to competing mechanosensory cues in an anterior to posterior order using specific legs. From behavior screens, we identified a pair of cholinergic command-like neurons, Mago-no-Te (MGT), whose optogenetic activation elicits thoracic grooming by hind legs. Thoracic grooming is typically composed of body sweeps and leg rubs in alternation, but clonal analysis coupled with amputation experiments revealed that MGT activation only commands the body sweeps: initiation of leg rubbing requires contact between leg and thorax. With new electron microscopy (EM) connectome data for the ventral nerve cord (VNC), we uncovered a circuit-based explanation for why stimulation of posterior thoracic mechanosensory bristles initiates cleaning by the hind legs. Our previous work showed that flies weigh mechanosensory inputs across the body to select which part to groom, but we did not know why the thorax was always cleaned last. Here, the connectome for the VNC enabled us to identify a pair of GABAergic inhibitory neurons, UMGT1, that receive diverse sensory inputs and synapse onto both MGT and components of its downstream pre-motor circuits. Optogenetic activation of UMGT1 suppresses thoracic cleaning, representing a mechanism by which mechanosensory stimuli on other body parts could take precedence in the grooming hierarchy. We also mapped the pre-motor circuit downstream of MGT, including inhibitory feedback connections that may enable rhythmicity and coordination of limb movement during thoracic grooming.
Collapse
Affiliation(s)
- Shingo Yoshikawa
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Paul Tang
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julie H. Simpson
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Tilsen S. An informal logic of feedback-based temporal control. Front Hum Neurosci 2022; 16:851991. [PMID: 35967002 PMCID: PMC9372483 DOI: 10.3389/fnhum.2022.851991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
A conceptual framework and mathematical model of the control of articulatory timing are presented, in which feedback systems play a fundamental role. The model applies both to relatively small timescales, such as within syllables, and to relatively large timescales, such as multi-phrase utterances. A crucial distinction is drawn between internal/predictive feedback and external/sensory feedback. It is argued that speakers modulate attention to feedback to speed up and slow down speech. A number of theoretical implications of the framework are discussed, including consequences for the understanding of syllable structure and prosodic phrase organization.
Collapse
|
4
|
Guo L, Zhang N, Simpson JH. Descending neurons coordinate anterior grooming behavior in Drosophila. Curr Biol 2022; 32:823-833.e4. [PMID: 35120659 DOI: 10.1016/j.cub.2021.12.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/20/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023]
Abstract
The brain coordinates the movements that constitute behavior, but how descending neurons convey the myriad of commands required to activate the motor neurons of the limbs in the right order and combinations to produce those movements is not well understood. For anterior grooming behavior in the fly, we show that its component head sweeps and leg rubs can be initiated separately, or as a set, by different descending neurons. Head sweeps and leg rubs are mutually exclusive movements of the front legs that normally alternate, and we show that circuits in the ventral nerve cord as well as in the brain can resolve competing commands. Finally, the left and right legs must work together to remove debris. The coordination for leg rubs can be achieved by unilateral activation of a single descending neuron, while a similar manipulation of a different descending neuron decouples the legs to produce single-sided head sweeps. Taken together, these results demonstrate that distinct descending neurons orchestrate the complex alternation between the movements that make up anterior grooming.
Collapse
Affiliation(s)
- Li Guo
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Neil Zhang
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julie H Simpson
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
5
|
Drosophila melanogaster grooming possesses syntax with distinct rules at different temporal scales. PLoS Comput Biol 2019; 15:e1007105. [PMID: 31242178 PMCID: PMC6594582 DOI: 10.1371/journal.pcbi.1007105] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/13/2019] [Indexed: 12/26/2022] Open
Abstract
Mathematical modeling of behavioral sequences yields insight into the rules and mechanisms underlying sequence generation. Grooming in Drosophila melanogaster is characterized by repeated execution of distinct, stereotyped actions in variable order. Experiments demonstrate that, following stimulation by an irritant, grooming progresses gradually from an early phase dominated by anterior cleaning to a later phase with increased walking and posterior cleaning. We also observe that, at an intermediate temporal scale, there is a strong relationship between the amount of time spent performing body-directed grooming actions and leg-directed actions. We then develop a series of data-driven Markov models that isolate and identify the behavioral features governing transitions between individual grooming bouts. We identify action order as the primary driver of probabilistic, but non-random, syntax structure, as has previously been identified. Subsequent models incorporate grooming bout duration, which also contributes significantly to sequence structure. Our results show that, surprisingly, the syntactic rules underlying probabilistic grooming transitions possess action duration-dependent structure, suggesting that sensory input-independent mechanisms guide grooming behavior at short time scales. Finally, the inclusion of a simple rule that modifies grooming transition probabilities over time yields a generative model that recapitulates the key features of observed grooming sequences at several time scales. These discoveries suggest that sensory input guides action selection by modulating internally generated dynamics. Additionally, the discovery of these principles governing grooming in D. melanogaster demonstrates the utility of incorporating temporal information when characterizing the syntax of behavioral sequences. Analysis of temporally rich behavioral sequences provides a quantitative description of the rules underlying their generation. Drosophila melanogaster grooming behavior consists of many complex sequences involving repetitions of well-characterized actions. In this paper, we leverage advances in machine vision to automatically annotate over 40 hours of video data of flies covered in dust and develop mathematical models that reveal the existence of syntax in D. melanogaster grooming. We find that sequence organization depends on grooming action identity, as has been well-established, and, more surprisingly, grooming action duration. The discovery of duration-dependent action selection leads us to conclude that, although sensory input informs grooming decisions on long time scales, internal dynamics also guide individual transitions between grooming actions. Therefore, incorporating action duration into our models allows us to uncover multi-scale temporal dynamics that suggest the existence of neural circuits dedicated to partially sensory-independent decision-making. Our approach highlights the importance of incorporating temporal information into sequential models, as doing so reveals the relative contributions of sensory input and internal dynamics to behavioral sequence generation.
Collapse
|
6
|
Hampel S, McKellar CE, Simpson JH, Seeds AM. Simultaneous activation of parallel sensory pathways promotes a grooming sequence in Drosophila. eLife 2017; 6:28804. [PMID: 28887878 PMCID: PMC5614557 DOI: 10.7554/elife.28804] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
A central model that describes how behavioral sequences are produced features a neural architecture that readies different movements simultaneously, and a mechanism where prioritized suppression between the movements determines their sequential performance. We previously described a model whereby suppression drives a Drosophila grooming sequence that is induced by simultaneous activation of different sensory pathways that each elicit a distinct movement (Seeds et al., 2014). Here, we confirm this model using transgenic expression to identify and optogenetically activate sensory neurons that elicit specific grooming movements. Simultaneous activation of different sensory pathways elicits a grooming sequence that resembles the naturally induced sequence. Moreover, the sequence proceeds after the sensory excitation is terminated, indicating that a persistent trace of this excitation induces the next grooming movement once the previous one is performed. This reveals a mechanism whereby parallel sensory inputs can be integrated and stored to elicit a delayed and sequential grooming response.
Collapse
Affiliation(s)
- Stefanie Hampel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Claire E McKellar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Julie H Simpson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Andrew M Seeds
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
7
|
Competitive Disinhibition Mediates Behavioral Choice and Sequences in Drosophila. Cell 2016; 167:858-870.e19. [PMID: 27720450 DOI: 10.1016/j.cell.2016.09.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/03/2016] [Accepted: 09/06/2016] [Indexed: 01/19/2023]
Abstract
Even a simple sensory stimulus can elicit distinct innate behaviors and sequences. During sensorimotor decisions, competitive interactions among neurons that promote distinct behaviors must ensure the selection and maintenance of one behavior, while suppressing others. The circuit implementation of these competitive interactions is still an open question. By combining comprehensive electron microscopy reconstruction of inhibitory interneuron networks, modeling, electrophysiology, and behavioral studies, we determined the circuit mechanisms that contribute to the Drosophila larval sensorimotor decision to startle, explore, or perform a sequence of the two in response to a mechanosensory stimulus. Together, these studies reveal that, early in sensory processing, (1) reciprocally connected feedforward inhibitory interneurons implement behavioral choice, (2) local feedback disinhibition provides positive feedback that consolidates and maintains the chosen behavior, and (3) lateral disinhibition promotes sequence transitions. The combination of these interconnected circuit motifs can implement both behavior selection and the serial organization of behaviors into a sequence.
Collapse
|
8
|
Ayers CA, Armsworth PR, Brosi BJ. Determinism as a statistical metric for ecologically important recurrent behaviors with trapline foraging as a case study. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1948-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|