1
|
Parakh S, Perri ER, Vidal M, Sultana J, Shadfar S, Mehta P, Konopka A, Thomas CJ, Spencer DM, Atkin JD. Protein disulphide isomerase (PDI) is protective against amyotrophic lateral sclerosis (ALS)-related mutant Fused in Sarcoma (FUS) in in vitro models. Sci Rep 2021; 11:17557. [PMID: 34475430 PMCID: PMC8413276 DOI: 10.1038/s41598-021-96181-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/26/2021] [Indexed: 12/04/2022] Open
Abstract
Mutations in Fused in Sarcoma (FUS) are present in familial and sporadic cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). FUS is localised in the nucleus where it has important functions in DNA repair. However, in ALS/FTD, mutant FUS mislocalises from the nucleus to the cytoplasm where it forms inclusions, a key pathological hallmark of neurodegeneration. Mutant FUS also inhibits protein import into the nucleus, resulting in defects in nucleocytoplasmic transport. Fragmentation of the neuronal Golgi apparatus, induction of endoplasmic reticulum (ER) stress, and inhibition of ER-Golgi trafficking are also associated with mutant FUS misfolding in ALS. Protein disulphide isomerase (PDI) is an ER chaperone previously shown to be protective against misfolding associated with mutant superoxide dismutase 1 (SOD1) and TAR DNA-binding protein-43 (TDP-43) in cellular and zebrafish models. However, a protective role against mutant FUS in ALS has not been previously described. In this study, we demonstrate that PDI is protective against mutant FUS. In neuronal cell line and primary cultures, PDI restores defects in nuclear import, prevents the formation of mutant FUS inclusions, inhibits Golgi fragmentation, ER stress, ER-Golgi transport defects, and apoptosis. These findings imply that PDI is a new therapeutic target in FUS-associated ALS.
Collapse
Affiliation(s)
- S Parakh
- Macquarie Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - E R Perri
- Macquarie Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - M Vidal
- Macquarie Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - J Sultana
- Macquarie Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - S Shadfar
- Macquarie Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - P Mehta
- Macquarie Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - A Konopka
- Macquarie Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - C J Thomas
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia
| | - D M Spencer
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - J D Atkin
- Macquarie Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
2
|
The p24 Complex Contributes to Specify Arf1 for COPI Coat Selection. Int J Mol Sci 2021; 22:ijms22010423. [PMID: 33401608 PMCID: PMC7794930 DOI: 10.3390/ijms22010423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Golgi trafficking depends on the small GTPase Arf1 which, upon activation, drives the assembly of different coats onto budding vesicles. Two related types of guanine nucleotide exchange factors (GEFs) activate Arf1 at different Golgi sites. In yeast, Gea1 in the cis-Golgi and Gea2 in the medial-Golgi activate Arf1 to form COPIcoated vesicles for retrograde cargo sorting, whereas Sec7 generates clathrin/adaptorcoated vesicles at the trans-Golgi network (TGN) for forward cargo transport. A central question is how the same activated Arf1 protein manages to assemble different coats depending on the donor Golgi compartment. A previous study has postulated that the interaction between Gea1 and COPI would channel Arf1 activation for COPI vesicle budding. Here, we found that the p24 complex, a major COPI vesicle cargo, promotes the binding of Gea1 with COPI by increasing the COPI association to the membrane independently of Arf1 activation. Furthermore, the p24 complex also facilitates the interaction of Arf1 with its COPI effector. Therefore, our study supports a mechanism by which the p24 complex contributes to program Arf1 activation by Gea1 for selective COPI coat assembly at the cis-Golgi compartment.
Collapse
|
3
|
Bartoszewski R, Gebert M, Janaszak-Jasiecka A, Cabaj A, Króliczewski J, Bartoszewska S, Sobolewska A, Crossman DK, Ochocka R, Kamysz W, Kalinowski L, Dąbrowski M, Collawn JF. Genome-wide mRNA profiling identifies RCAN1 and GADD45A as regulators of the transitional switch from survival to apoptosis during ER stress. FEBS J 2020; 287:2923-2947. [PMID: 31880863 DOI: 10.1111/febs.15195] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/26/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
Endoplasmic reticulum (ER) stress conditions promote a cellular adaptive mechanism called the unfolded protein response (UPR) that utilizes three stress sensors, inositol-requiring protein 1, protein kinase RNA-like ER kinase, and activating transcription factor 6. These sensors activate a number of pathways to reduce the stress and facilitate cell survival. While much is known about the mechanisms involved that modulate apoptosis during chronic stress, less is known about the transition between the prosurvival and proapoptotic factors that determine cell fate. Here, we employed a genetic screen that utilized three different pharmacological stressors to induce ER stress in a human-immortalized airway epithelial cell line, immortalized human bronchial epithelial cells. We followed the stress responses over an 18-h time course and utilized real-time monitoring of cell survival, next-generation sequencing, and quantitative real-time PCR to identify and validate genes that were upregulated with all three commonly employed ER stressors, inhibitor of calpain 1, tunicamycin, and thapsigargin. growth arrest and DNA damage-inducible alpha (GADD45A), a proapoptotic factor, and regulator of calcineurin 1 (RCAN1) mRNAs were identified and verified by showing that small interfering RNA (siRNA) knockdown of GADD45A decreased CCAAT-enhancer-binding protein homologous protein (a.k.a DDIT3), BCL2-binding component 3 (a.k.a. BBC3), and phorbol-12-myristate-13-acetate-induced protein 1 expression, 3 proapoptotic factors, and increased cell viability during ER stress conditions, whereas siRNA knockdown of RCAN1 dramatically decreased cell viability. These results suggest that the relative levels of these two genes regulate cell fate decisions during ER stress independent of the type of ER stressor.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Poland
| | - Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Poland
| | | | - Aleksandra Cabaj
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Jarosław Króliczewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Poland
| | | | - Aleksandra Sobolewska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Poland
| | - David K Crossman
- Department of Genetics, Heflin Center for Genomic Science, University of Alabama at Birmingham, AL, USA
| | - Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Medical University of Gdansk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Poland
| | - Michał Dąbrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|