1
|
Janet R, Ligneul R, Losecaat-Vermeer AB, Philippe R, Bellucci G, Derrington E, Park SQ, Dreher JC. Regulation of social hierarchy learning by serotonin transporter availability. Neuropsychopharmacology 2022; 47:2205-2212. [PMID: 35945275 PMCID: PMC9630526 DOI: 10.1038/s41386-022-01378-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Learning one's status in a group is a fundamental process in building social hierarchies. Although animal studies suggest that serotonin (5-HT) signaling modulates learning social hierarchies, direct evidence in humans is lacking. Here we determined the relationship between serotonin transporter (SERT) availability and brain systems engaged in learning social ranks combining computational approaches with simultaneous PET-fMRI acquisition in healthy males. We also investigated the link between SERT availability and brain activity in a non-social control condition involving learning the payoffs of slot machines. Learning social ranks was modulated by the dorsal raphe nucleus (DRN) 5-HT function. BOLD ventral striatal response, tracking the rank of opponents, decreased with DRN SERT levels. Moreover, this link was specific to the social learning task. These findings demonstrate that 5-HT plays an influence on the computations required to learn social ranks.
Collapse
Affiliation(s)
- Remi Janet
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Romain Ligneul
- grid.421010.60000 0004 0453 9636Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Annabel B. Losecaat-Vermeer
- grid.10420.370000 0001 2286 1424Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria ,grid.7468.d0000 0001 2248 7639Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Remi Philippe
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Gabriele Bellucci
- grid.419501.80000 0001 2183 0052Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Edmund Derrington
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Soyoung Q. Park
- grid.7468.d0000 0001 2248 7639Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany ,grid.418213.d0000 0004 0390 0098Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Nuthetal, Germany
| | - Jean-Claude Dreher
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France.
| |
Collapse
|
2
|
Mengoli M, Oliva JL, Mendonça T, Chabaud C, Arroub S, Lafont-Lecuelle C, Cozzi A, Pageat P, Bienboire-Frosini C. Neurohormonal Profiles of Assistance Dogs Compared to Pet Dogs: What Is the Impact of Different Lifestyles? Animals (Basel) 2021; 11:ani11092594. [PMID: 34573561 PMCID: PMC8466048 DOI: 10.3390/ani11092594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Dogs are currently involved in various roles in our society beyond companionship. The tasks humans assign to them impact their daily life and can sometimes create stressful situations, possibly jeopardizing their welfare. For example, assistance dogs need to manage their emotions in various challenging situations and environments. Thus, the capacity to cope with emotional stress is highly desirable in assistance dogs (~40% of assistance dogs fail to complete their education program). The emotional and stress responses are guided by brain processes involving neuromodulators. Neurohormonal profiling of these dogs can: (i) give cues about their emotional suitability to fulfill an assistance role; (ii) enhance their selection; and (iii) help to assess and improve their welfare state during the training course. We compared basal blood levels of three neuromodulators of interest between two populations, assistance vs. pet dogs. We found significantly different concentrations of oxytocin, a neuromodulator involved in social behavior. Levels of prolactin, a putative marker of chronic stress, were higher (although not statistically significant) and variable in assistance dogs. Dogs’ age also seemed to influence the various neuromodulators levels. These findings highlight the impact of different lifestyles undergone by dogs and the possibility to use neurohormonal profiling to monitor their effect on the dogs’ welfare and stress state. Abstract Assistance dogs must manage stress efficiently because they are involved in challenging tasks. Their welfare is currently a fundamental issue. This preliminary study aimed to compare assistance dogs (AD; n = 22) with pet dogs (PD; n = 24), using blood neuromodulator indicators to help find biomarkers that can improve the AD breeding, selection, training, and welfare monitoring. Both populations originated from different breeds, are of different ages, and had different lifestyles. Basal peripheral concentrations of prolactin (PRL), serotonin (5-HT), free (fOT) and total (tOT) oxytocin were measured by immunoassays. Multiple linear regressions were performed to assess the effect of activity, age, sex, and their interactions on these parameters. Correlations between neurohormonal levels were analyzed. No interactions were significant. fOT and tOT concentrations were significantly influenced by age (p < 0.0001 and p = 0.0002, respectively) and dogs’ activity (p = 0.0006 and p = 0.0277, respectively). A tendency was observed for age effect on PRL (p = 0.0625) and 5-HT (p = 0.0548), as well as for sex effect on tOT (p = 0.0588). PRL concentrations were heterogenous among AD. fOT and tOT were significantly but weakly correlated (Pearson’s r = 0.34; p = 0.04). Blood prolactin, serotonin, and oxytocin may represent biomarkers to assess workload and chronic stress-related responses in ADs and eventually improve their selection and training.
Collapse
Affiliation(s)
- Manuel Mengoli
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France; (M.M.); (J.L.O.); (T.M.); (C.C.); (S.A.); (C.L.-L.); (A.C.); (P.P.)
- Clinical Ethology and Animal Welfare Centre (CECBA), 84400 Apt, France
| | - Jessica L. Oliva
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France; (M.M.); (J.L.O.); (T.M.); (C.C.); (S.A.); (C.L.-L.); (A.C.); (P.P.)
| | - Tiago Mendonça
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France; (M.M.); (J.L.O.); (T.M.); (C.C.); (S.A.); (C.L.-L.); (A.C.); (P.P.)
- Clinical Ethology and Animal Welfare Centre (CECBA), 84400 Apt, France
| | - Camille Chabaud
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France; (M.M.); (J.L.O.); (T.M.); (C.C.); (S.A.); (C.L.-L.); (A.C.); (P.P.)
| | - Sana Arroub
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France; (M.M.); (J.L.O.); (T.M.); (C.C.); (S.A.); (C.L.-L.); (A.C.); (P.P.)
| | - Céline Lafont-Lecuelle
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France; (M.M.); (J.L.O.); (T.M.); (C.C.); (S.A.); (C.L.-L.); (A.C.); (P.P.)
| | - Alessandro Cozzi
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France; (M.M.); (J.L.O.); (T.M.); (C.C.); (S.A.); (C.L.-L.); (A.C.); (P.P.)
| | - Patrick Pageat
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France; (M.M.); (J.L.O.); (T.M.); (C.C.); (S.A.); (C.L.-L.); (A.C.); (P.P.)
- Clinical Ethology and Animal Welfare Centre (CECBA), 84400 Apt, France
| | - Cécile Bienboire-Frosini
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France; (M.M.); (J.L.O.); (T.M.); (C.C.); (S.A.); (C.L.-L.); (A.C.); (P.P.)
- Correspondence: ; Tel.: +33-490-750-618
| |
Collapse
|
3
|
Courtiol E, Menezes EC, Teixeira CM. Serotonergic regulation of the dopaminergic system: Implications for reward-related functions. Neurosci Biobehav Rev 2021; 128:282-293. [PMID: 34139249 PMCID: PMC8335358 DOI: 10.1016/j.neubiorev.2021.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Abstract
Serotonin is a critical neuromodulator involved in development and behavior. Its role in reward is however still debated. Here, we first review classical studies involving electrical stimulation protocols and pharmacological approaches. Contradictory results on the serotonergic' involvement in reward emerge from these studies. These differences might be ascribable to either the diversity of cellular types within the raphe nuclei or/and the specific projection pathways of serotonergic neurons. We continue to review more recent work, using optogenetic approaches to activate serotonergic cells in the Raphe to VTA pathway. From these studies, it appears that activation of this pathway can lead to reinforcement learning mediated through the excitation of dopaminergic neurons by serotonergic neurons co-transmitting glutamate. Finally, given the importance of serotonin during development on adult emotion, the effect of abnormal early-life levels of serotonin on the dopaminergic system will also be discussed. Understanding the interaction between the serotonergic and dopaminergic systems during development and adulthood is critical to gain insight into the specific facets of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Emmanuelle Courtiol
- Lyon Neuroscience Research Center, UMR 5292- INSERM U1028- Université Lyon 1, 69675 Bron Cedex, France
| | - Edenia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
4
|
Cunha C, Smiley JF, Chuhma N, Shah R, Bleiwas C, Menezes EC, Seal RP, Edwards RH, Rayport S, Ansorge MS, Castellanos FX, Teixeira CM. Perinatal interference with the serotonergic system affects VTA function in the adult via glutamate co-transmission. Mol Psychiatry 2021; 26:4795-4812. [PMID: 32398719 PMCID: PMC7657958 DOI: 10.1038/s41380-020-0763-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 11/29/2022]
Abstract
Serotonin and dopamine are associated with multiple psychiatric disorders. How they interact during development to affect subsequent behavior remains unknown. Knockout of the serotonin transporter or postnatal blockade with selective serotonin reuptake inhibitors (SSRIs) leads to novelty-induced exploration deficits in adulthood, potentially involving the dopamine system. Here, we show in the mouse that raphe nucleus serotonin neurons activate ventral tegmental area dopamine neurons via glutamate co-transmission and that this co-transmission is reduced in animals exposed postnatally to SSRIs. Blocking serotonin neuron glutamate co-transmission mimics this SSRI-induced hypolocomotion, while optogenetic activation of dopamine neurons reverses this hypolocomotor phenotype. Our data demonstrate that serotonin neurons modulate dopamine neuron activity via glutamate co-transmission and that this pathway is developmentally malleable, with high serotonin levels during early life reducing co-transmission, revealing the basis for the reduced novelty-induced exploration in adulthood due to postnatal SSRI exposure.
Collapse
Affiliation(s)
- Catarina Cunha
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - John F Smiley
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Nao Chuhma
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Relish Shah
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Cynthia Bleiwas
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Edenia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Rebecca P Seal
- Department of Neurobiology and Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Robert H Edwards
- Departments of Neurology and Physiology, University of California, San Francisco School of Medicine, San Francisco, CA, 94143, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Mark S Ansorge
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Francisco X Castellanos
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Abstract
This paper introduces a new construct, the 'pivotal mental state', which is defined as a hyper-plastic state aiding rapid and deep learning that can mediate psychological transformation. We believe this new construct bears relevance to a broad range of psychological and psychiatric phenomena. We argue that pivotal mental states serve an important evolutionary function, that is, to aid psychological transformation when actual or perceived environmental pressures demand this. We cite evidence that chronic stress and neurotic traits are primers for a pivotal mental state, whereas acute stress can be a trigger. Inspired by research with serotonin 2A receptor agonist psychedelics, we highlight how activity at this particular receptor can robustly and reliably induce pivotal mental states, but we argue that the capacity for pivotal mental states is an inherent property of the human brain itself. Moreover, we hypothesize that serotonergic psychedelics hijack a system that has evolved to mediate rapid and deep learning when its need is sensed. We cite a breadth of evidences linking stress via a variety of inducers, with an upregulated serotonin 2A receptor system (e.g. upregulated availability of and/or binding to the receptor) and acute stress with 5-HT release, which we argue can activate this primed system to induce a pivotal mental state. The pivotal mental state model is multi-level, linking a specific molecular gateway (increased serotonin 2A receptor signaling) with the inception of a hyper-plastic brain and mind state, enhanced rate of associative learning and the potential mediation of a psychological transformation.
Collapse
Affiliation(s)
- Ari Brouwer
- Centre for Psychedelic Research, Imperial College London, London, United Kingdom
| | | |
Collapse
|
6
|
Conio B, Martino M, Magioncalda P, Escelsior A, Inglese M, Amore M, Northoff G. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders. Mol Psychiatry 2020; 25:82-93. [PMID: 30953003 DOI: 10.1038/s41380-019-0406-4] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/18/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Abstract
Alterations in brain intrinsic activity-as organized in resting-state networks (RSNs) such as sensorimotor network (SMN), salience network (SN), and default-mode network (DMN)-and in neurotransmitters signaling-such as dopamine (DA) and serotonin (5-HT)-have been independently detected in psychiatric disorders like bipolar disorder and schizophrenia. Thus, the aim of this work was to investigate the relationship between such neurotransmitters and RSNs in healthy, by reviewing the relevant work on this topic and performing complementary analyses, in order to better understand their physiological link, as well as their alterations in psychiatric disorders. According to the reviewed data, neurotransmitters nuclei diffusively project to subcortical and cortical regions of RSNs. In particular, the dopaminergic substantia nigra (SNc)-related nigrostriatal pathway is structurally and functionally connected with core regions of the SMN, whereas the ventral tegmental area (VTA)-related mesocorticolimbic pathway with core regions of the SN. The serotonergic raphe nuclei (RNi) connections involve regions of the SMN and DMN. Coherently, changes in neurotransmitters activity impact the functional configuration and level of activity of RSNs, as measured by functional connectivity (FC) and amplitude of low-frequency fluctuations/temporal variability of BOLD signal. Specifically, DA signaling is associated with increase in FC and activity in the SMN (hypothetically via the SNc-related nigrostriatal pathway) and SN (hypothetically via the VTA-related mesocorticolimbic pathway), as well as concurrent decrease in FC and activity in the DMN. By contrast, 5-HT signaling (via the RNi-related pathways) is associated with decrease in SMN activity along with increase in DMN activity. Complementally, our empirical data showed a positive correlation between SNc-related FC and SMN activity, whereas a negative correlation between RNi-related FC and SMN activity (along with tilting of networks balance toward the DMN). According to these data, we hypothesize that the activity of neurotransmitter-related neurons synchronize the low-frequency oscillations within different RSNs regions, thus affecting the baseline level of RSNs activity and their balancing. In our model, DA signaling favors the predominance of SMN-SN activity, whereas 5-HT signaling favors the predominance of DMN activity, manifesting in distinct behavioral patterns. In turn, alterations in neurotransmitters signaling (or its disconnection) may favor a correspondent functional reorganization of RSNs, manifesting in distinct psychopathological states. The here suggested model carries important implications for psychiatric disorders, providing novel and well testable hypotheses especially on bipolar disorder and schizophrenia.
Collapse
Affiliation(s)
- Benedetta Conio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Martino
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Paola Magioncalda
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy. .,IRCCS Ospedale Policlinico San Martino, Genoa, Italy. .,Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan. .,Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Andrea Escelsior
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matilde Inglese
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Neurology, University of Genoa, Genoa, Italy.,Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Georg Northoff
- University of Ottawa Brain and Mind Research Institute, and Mind Brain Imaging and Neuroethics Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada. .,Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China. .,Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
7
|
Martino M, Magioncalda P, Conio B, Capobianco L, Russo D, Adavastro G, Tumati S, Tan Z, Lee HC, Lane TJ, Amore M, Inglese M, Northoff G. Abnormal Functional Relationship of Sensorimotor Network With Neurotransmitter-Related Nuclei via Subcortical-Cortical Loops in Manic and Depressive Phases of Bipolar Disorder. Schizophr Bull 2020; 46:163-174. [PMID: 31150559 PMCID: PMC6942162 DOI: 10.1093/schbul/sbz035] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Manic and depressive phases of bipolar disorder (BD) show opposite psychomotor symptoms. Neuronally, these may depend on altered relationships between sensorimotor network (SMN) and subcortical structures. The study aimed to investigate the functional relationships of SMN with substantia nigra (SN) and raphe nuclei (RN) via subcortical-cortical loops, and their alteration in bipolar mania and depression, as characterized by psychomotor excitation and inhibition. METHOD In this resting-state functional magnetic resonance imaging (fMRI) study on healthy (n = 67) and BD patients (n = 100), (1) functional connectivity (FC) between thalamus and SMN was calculated and correlated with FC from SN or RN to basal ganglia (BG)/thalamus in healthy; (2) using an a-priori-driven approach, thalamus-SMN FC, SN-BG/thalamus FC, and RN-BG/thalamus FC were compared between healthy and BD, focusing on manic (n = 34) and inhibited depressed (n = 21) patients. RESULTS (1) In healthy, the thalamus-SMN FC showed a quadratic correlation with SN-BG/thalamus FC and a linear negative correlation with RN-BG/thalamus FC. Accordingly, the SN-related FC appears to enable the thalamus-SMN coupling, while the RN-related FC affects it favoring anti-correlation. (2) In BD, mania showed an increase in thalamus-SMN FC toward positive values (ie, thalamus-SMN abnormal coupling) paralleled by reduction of RN-BG/thalamus FC. By contrast, inhibited depression showed a decrease in thalamus-SMN FC toward around-zero values (ie, thalamus-SMN disconnection) paralleled by reduction of SN-BG/thalamus FC (and RN-BG/thalamus FC). The results were replicated in independent HC and BD datasets. CONCLUSIONS These findings suggest an abnormal relationship of SMN with neurotransmitters-related areas via subcortical-cortical loops in mania and inhibited depression, finally resulting in psychomotor alterations.
Collapse
Affiliation(s)
- Matteo Martino
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Magioncalda
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- To whom correspondence should be addressed; Clinica Psichiatrica, Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy; tel: +390103537668, fax: +390103537669, e-mail:
| | - Benedetta Conio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Capobianco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniel Russo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giulia Adavastro
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Shankar Tumati
- University of Ottawa Brain and Mind Research Institute, and Mind Brain Imaging and Neuroethics Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Zhonglin Tan
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hsin-Chien Lee
- Department of Psychiatry, College of Medicine and Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Timothy J Lane
- Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matilde Inglese
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Neurology, University of Genoa, Genoa, Italy
- Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Georg Northoff
- University of Ottawa Brain and Mind Research Institute, and Mind Brain Imaging and Neuroethics Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
8
|
Abstract
Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain's default response to adversity but that an improved ability to change one's situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important - and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes.
Collapse
Affiliation(s)
- RL Carhart-Harris
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - DJ Nutt
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
9
|
Xiao X, Deng H, Wei L, Huang Y, Wang Z. Neural activity of orbitofrontal cortex contributes to control of waiting. Eur J Neurosci 2016; 44:2300-13. [PMID: 27336203 DOI: 10.1111/ejn.13320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/24/2016] [Accepted: 06/20/2016] [Indexed: 11/26/2022]
Abstract
The willingness to wait for delayed reward and information is of fundamental importance for deliberative behaviors. The orbitofrontal cortex (OFC) is thought to be a core component of the neural circuitry underlying the capacity to control waiting. However, the neural correlates of active waiting and the causal role of the OFC in the control of waiting still remain largely unknown. Here, we trained rats to perform a waiting task (waiting for a pseudorandom time to obtain the water reward), and recorded neuronal ensembles in the OFC throughout the task. We observed that subset OFC neurons exhibited ramping activities throughout the waiting process. Receiver operating characteristic analysis showed that neural activities during the waiting period even predicted the trial outcomes (patient vs. impatient) on a trial-by-trial basis. Furthermore, optogenetic activation of the OFC during the waiting period improved the waiting performance, but did not influence rats' movement to obtain the reward. Taken together, these findings reveal that the neural activity in the OFC contributes to the control of waiting.
Collapse
Affiliation(s)
- Xiong Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience and CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,Graduate School of University of Chinese Academy of Sciences, Shanghai, China
| | - Hanfei Deng
- Institute of Neuroscience, State Key Laboratory of Neuroscience and CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,Graduate School of University of Chinese Academy of Sciences, Shanghai, China
| | - Lei Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience and CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanwang Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience and CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zuoren Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience and CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
10
|
Luo M, Zhou J, Liu Z. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. ACTA ACUST UNITED AC 2015; 22:452-60. [PMID: 26286655 PMCID: PMC4561406 DOI: 10.1101/lm.037317.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/06/2015] [Indexed: 12/20/2022]
Abstract
The dorsal raphe nucleus (DRN) represents one of the most sensitive reward sites in the brain. However, the exact relationship between DRN neuronal activity and reward signaling has been elusive. In this review, we will summarize anatomical, pharmacological, optogenetics, and electrophysiological studies on the functions and circuit mechanisms of DRN neurons in reward processing. The DRN is commonly associated with serotonin (5-hydroxytryptamine; 5-HT), but this nucleus also contains neurons of the neurotransmitter phenotypes of glutamate, GABA and dopamine. Pharmacological studies indicate that 5-HT might be involved in modulating reward- or punishment-related behaviors. Recent optogenetic stimulations demonstrate that transient activation of DRN neurons produces strong reinforcement signals that are carried out primarily by glutamate. Moreover, activation of DRN 5-HT neurons enhances reward waiting. Electrophysiological recordings reveal that the activity of DRN neurons exhibits diverse behavioral correlates in reward-related tasks. Studies so far thus demonstrate the strong power of DRN neurons in reward signaling and at the same time invite additional efforts to dissect the roles and mechanisms of different DRN neuron types in various processes of reward-related behaviors.
Collapse
Affiliation(s)
- Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingfeng Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhixiang Liu
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|