1
|
Abnizova I, Stapel C, Boekhorst RT, Lee JTH, Hemberg M. Integrative analysis of transcriptomic and epigenomic data reveals distinct patterns for developmental and housekeeping gene regulation. BMC Biol 2024; 22:78. [PMID: 38600550 PMCID: PMC11005181 DOI: 10.1186/s12915-024-01869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Regulation of transcription is central to the emergence of new cell types during development, and it often involves activation of genes via proximal and distal regulatory regions. The activity of regulatory elements is determined by transcription factors (TFs) and epigenetic marks, but despite extensive mapping of such patterns, the extraction of regulatory principles remains challenging. RESULTS Here we study differentially and similarly expressed genes along with their associated epigenomic profiles, chromatin accessibility and DNA methylation, during lineage specification at gastrulation in mice. Comparison of the three lineages allows us to identify genomic and epigenomic features that distinguish the two classes of genes. We show that differentially expressed genes are primarily regulated by distal elements, while similarly expressed genes are controlled by proximal housekeeping regulatory programs. Differentially expressed genes are relatively isolated within topologically associated domains, while similarly expressed genes tend to be located in gene clusters. Transcription of differentially expressed genes is associated with differentially open chromatin at distal elements including enhancers, while that of similarly expressed genes is associated with ubiquitously accessible chromatin at promoters. CONCLUSION Based on these associations of (linearly) distal genes' transcription start sites (TSSs) and putative enhancers for developmental genes, our findings allow us to link putative enhancers to their target promoters and to infer lineage-specific repertoires of putative driver transcription factors, within which we define subgroups of pioneers and co-operators.
Collapse
Affiliation(s)
- Irina Abnizova
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Carine Stapel
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | | | - Martin Hemberg
- Wellcome Sanger Institute, Hinxton, UK.
- The Gene Lay Institute of Immunology and Inflammation Brigham & Women's Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
2
|
Zhu I, Landsman D. Clustered and diverse transcription factor binding underlies cell type specificity of enhancers for housekeeping genes. Genome Res 2023; 33:1662-1672. [PMID: 37884340 PMCID: PMC10691539 DOI: 10.1101/gr.278130.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023]
Abstract
Housekeeping genes are considered to be regulated by common enhancers across different tissues. Here we report that most of the commonly expressed mouse or human genes across different cell types, including more than half of the previously identified housekeeping genes, are associated with cell type-specific enhancers. Furthermore, the binding of most transcription factors (TFs) is cell type-specific. We reason that these cell type specificities are causally related to the collective TF recruitment at regulatory sites, as TFs tend to bind to regions associated with many other TFs and each cell type has a unique repertoire of expressed TFs. Based on binding profiles of hundreds of TFs from HepG2, K562, and GM12878 cells, we show that 80% of all TF peaks overlapping H3K27ac signals are in the top 20,000-23,000 most TF-enriched H3K27ac peak regions, and approximately 12,000-15,000 of these peaks are enhancers (nonpromoters). Those enhancers are mainly cell type-specific and include those linked to the majority of commonly expressed genes. Moreover, we show that the top 15,000 most TF-enriched regulatory sites in HepG2 cells, associated with about 200 TFs, can be predicted largely from the binding profile of as few as 30 TFs. Through motif analysis, we show that major enhancers harbor diverse and clustered motifs from a combination of available TFs uniquely present in each cell type. We propose a mechanism that explains how the highly focused TF binding at regulatory sites results in cell type specificity of enhancers for housekeeping and commonly expressed genes.
Collapse
Affiliation(s)
- Iris Zhu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
3
|
Alexandre PA, Naval-Sánchez M, Menzies M, Nguyen LT, Porto-Neto LR, Fortes MRS, Reverter A. Chromatin accessibility and regulatory vocabulary across indicine cattle tissues. Genome Biol 2021; 22:273. [PMID: 34548076 PMCID: PMC8454054 DOI: 10.1186/s13059-021-02489-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spatiotemporal changes in the chromatin accessibility landscape are essential to cell differentiation, development, health, and disease. The quest of identifying regulatory elements in open chromatin regions across different tissues and developmental stages is led by large international collaborative efforts mostly focusing on model organisms, such as ENCODE. Recently, the Functional Annotation of Animal Genomes (FAANG) has been established to unravel the regulatory elements in non-model organisms, including cattle. Now, we can transition from prediction to validation by experimentally identifying the regulatory elements in tropical indicine cattle. The identification of regulatory elements, their annotation and comparison with the taurine counterpart, holds high promise to link regulatory regions to adaptability traits and improve animal productivity and welfare. RESULTS We generate open chromatin profiles for liver, muscle, and hypothalamus of indicine cattle through ATAC-seq. Using robust methods for motif discovery, motif enrichment and transcription factor binding sites, we identify potential master regulators of the epigenomic profile in these three tissues, namely HNF4, MEF2, and SOX factors, respectively. Integration with transcriptomic data allows us to confirm some of their target genes. Finally, by comparing our results with Bos taurus data we identify potential indicine-specific open chromatin regions and overlaps with indicine selective sweeps. CONCLUSIONS Our findings provide insights into the identification and analysis of regulatory elements in non-model organisms, the evolution of regulatory elements within two cattle subspecies as well as having an immediate impact on the animal genetics community in particular for a relevant productive species such as tropical cattle.
Collapse
Affiliation(s)
- Pâmela A Alexandre
- CSIRO Agriculture & Food, 306 Carmody Rd., QLD, 4067, Brisbane, Australia.
| | - Marina Naval-Sánchez
- CSIRO Agriculture & Food, 306 Carmody Rd., QLD, 4067, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Moira Menzies
- CSIRO Agriculture & Food, 306 Carmody Rd., QLD, 4067, Brisbane, Australia
| | - Loan T Nguyen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Antonio Reverter
- CSIRO Agriculture & Food, 306 Carmody Rd., QLD, 4067, Brisbane, Australia
| |
Collapse
|
4
|
Appel E, Weissmann S, Salzberg Y, Orlovsky K, Negreanu V, Tsoory M, Raanan C, Feldmesser E, Bernstein Y, Wolstein O, Levanon D, Groner Y. An ensemble of regulatory elements controls Runx3 spatiotemporal expression in subsets of dorsal root ganglia proprioceptive neurons. Genes Dev 2017; 30:2607-2622. [PMID: 28007784 PMCID: PMC5204353 DOI: 10.1101/gad.291484.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Appel et al. defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Then, using transgenic mice expressing BAC reporters spanning the Runx3 locus, they discovered three REs that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. The Runx3 transcription factor is essential for development and diversification of the dorsal root ganglia (DRGs) TrkC sensory neurons. In Runx3-deficient mice, developing TrkC neurons fail to extend central and peripheral afferents, leading to cell death and disruption of the stretch reflex circuit, resulting in severe limb ataxia. Despite its central role, the mechanisms underlying the spatiotemporal expression specificities of Runx3 in TrkC neurons were largely unknown. Here we first defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Using transgenic mice expressing BAC reporters spanning the Runx3 locus, we discovered three REs—dubbed R1, R2, and R3—that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. Deletion of single or multiple elements either in the BAC transgenics or by CRISPR/Cas9-mediated endogenous ablation established the REs’ ability to promote and/or repress Runx3 expression in developing sensory neurons. Our analysis reveals that an intricate combinatorial interplay among the three REs governs Runx3 expression in distinct subtypes of TrkC neurons while concomitantly extinguishing its expression in non-TrkC neurons. These findings provide insights into the mechanism regulating cell type-specific expression and subtype diversification of TrkC neurons in developing DRGs.
Collapse
Affiliation(s)
- Elena Appel
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sarit Weissmann
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yehuda Salzberg
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel.,Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Kira Orlovsky
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Varda Negreanu
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Calanit Raanan
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ester Feldmesser
- Life Science Core Facilities, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yael Bernstein
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Orit Wolstein
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yoram Groner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
5
|
Kumar R, Chotaliya M, Vuppala S, Auradkar A, Palasamudrum K, Joshi R. Role of Homothorax in region specific regulation of Deformed in embryonic neuroblasts. Mech Dev 2015; 138 Pt 2:190-197. [PMID: 26409112 PMCID: PMC4678145 DOI: 10.1016/j.mod.2015.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 10/27/2022]
Abstract
The expression and regulation of Hox genes in developing central nervous system (CNS) lack important details like specific cell types where Hox genes are expressed and the transcriptional regulatory players involved in these cells. In this study we have investigated the expression and regulation of Drosophila Hox gene Deformed (Dfd) in specific cell types of embryonic CNS. Using Dfd neural autoregulatory enhancer we find that Dfd autoregulates itself in cells of mandibular neuromere. We have also investigated the role of a Hox cofactor Homothorax (Hth) for its role in regulating Dfd expression in CNS. We find that Hth exhibits a region specific role in controlling the expression of Dfd, but has no direct role in mandibular Dfd neural autoregulatory circuit. Our results also suggest that homeodomain of Hth is not required for regulating Dfd expression in embryonic CNS.
Collapse
Affiliation(s)
- Raviranjan Kumar
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), 4-1-714, Tuljaguda Complex, Nampally, Hyderabad-500001, India; Graduate Studies, Manipal University, Manipal 576104, India
| | - Maheshvari Chotaliya
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), 4-1-714, Tuljaguda Complex, Nampally, Hyderabad-500001, India
| | - Sruthakeerthi Vuppala
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), 4-1-714, Tuljaguda Complex, Nampally, Hyderabad-500001, India
| | - Ankush Auradkar
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), 4-1-714, Tuljaguda Complex, Nampally, Hyderabad-500001, India
| | - Kalyani Palasamudrum
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), 4-1-714, Tuljaguda Complex, Nampally, Hyderabad-500001, India
| | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), 4-1-714, Tuljaguda Complex, Nampally, Hyderabad-500001, India.
| |
Collapse
|