1
|
Actin polymerisation and crosslinking drive left-right asymmetry in single cell and cell collectives. Nat Commun 2023; 14:776. [PMID: 36774346 PMCID: PMC9922260 DOI: 10.1038/s41467-023-35918-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/06/2023] [Indexed: 02/13/2023] Open
Abstract
Deviations from mirror symmetry in the development of bilateral organisms are common but the mechanisms of initial symmetry breaking are insufficiently understood. The actin cytoskeleton of individual cells self-organises in a chiral manner, but the molecular players involved remain essentially unidentified and the relationship between chirality of an individual cell and cell collectives is unclear. Here, we analysed self-organisation of the chiral actin cytoskeleton in individual cells on circular or elliptical patterns, and collective cell alignment in confined microcultures. Screening based on deep-learning analysis of actin patterns identified actin polymerisation regulators, depletion of which suppresses chirality (mDia1) or reverses chirality direction (profilin1 and CapZβ). The reversed chirality is mDia1-independent but requires the function of actin-crosslinker α-actinin1. A robust correlation between the effects of a variety of actin assembly regulators on chirality of individual cells and cell collectives is revealed. Thus, actin-driven cell chirality may underlie tissue and organ asymmetry.
Collapse
|
2
|
Rahman T, Peters F, Wan LQ. Cell jamming regulates epithelial chiral morphogenesis. J Biomech 2023; 147:111435. [PMID: 36641827 PMCID: PMC10020895 DOI: 10.1016/j.jbiomech.2023.111435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/24/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Internal organs such as the heart demonstrate apparent left-right (LR) asymmetric morphology and positioning. Cellular chirality and associated LR biased mechanical behavior such as cell migration have been attributed to LR symmetry breaking during embryonic development. Mathematical models have shown that chiral directional migration can be driven by cellular intrinsic torque. Tissue jamming state (i.e., solid-like vs fluid-like state) strongly regulates collective migratory behavior, but how it might affect chiral morphogenesis is still unknown. Here, we develop a cell vertex model to study the role of tissue rigidity or jamming state on chiral morphogenesis of the cells on a patterned ring-shaped tissue, simulating a previously reported experimental setup for measuring cell chirality. We simulate chirality as torsional forces acting on cell vertices. As expected, the cells undergo bidirectional migration at the opposing (inner and outer) boundaries of the ring-shaped tissue. We discover that more fluid-like tissues (unjammed) demonstrate a stronger chiral cell alignment and elongation than more solid-like (jammed) tissues and maintain a bigger difference in migration velocity between opposing tissue boundaries. Finally, we find that fluid-like tissues undergo more cell-neighbor exchange events. This study reveals that chiral torque is sufficient to achieve a biased cellular alignment as seen in vitro. It further sheds light on the mechanical regulation of chiral morphogenesis of tissues and reveals a role of cell density-independent tissue rigidity in this process.
Collapse
Affiliation(s)
- Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Frank Peters
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
3
|
Ganitskaya YV, Dinh The Dung, Coi TH, Khasanov BF, Feoktistova NY, Surov AV. Evaluation of the Behavior of Some Native Dogs in Vietnam to Determine Their Suitability as Detector Dogs. BIOL BULL+ 2022. [DOI: 10.1134/s106235902202008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
In dogs of native breeds (“Hmong,” “Phu Quoc,” and “Zang Soi”), the features of behavior pre-adapted to interaction with humans and formed in the process of directional selection have been revealed. Behavioral characteristics (contactiveness, activity, playfulness, reaction to the unexpected appearance of an unfamiliar object, and abrupt sounds) were used to evaluate the dogs’ suitability for training for use as service detector dogs. It was shown that native dogs even without directional selection can show high indices of activity and contact with a human, similar to those found by the authors earlier for European breeds. Indicators of playfulness and reaction to unfamiliar objects and sharp sounds are formed only in the process of directional selection. The “Zang Soi” dog recommended for breeding and use as detection dogs turned out to be the closest to the European breeds in terms of activity and contactiveness indices.
Collapse
|
4
|
Rahman T, Zhang H, Fan J, Wan LQ. Cell chirality in cardiovascular development and disease. APL Bioeng 2020; 4:031503. [PMID: 32903894 PMCID: PMC7449703 DOI: 10.1063/5.0014424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
The cardiovascular system demonstrates left-right (LR) asymmetry: most notably, the LR asymmetric looping of the bilaterally symmetric linear heart tube. Similarly, the orientation of the aortic arch is asymmetric as well. Perturbations to the asymmetry have been associated with several congenital heart malformations and vascular disorders. The source of the asymmetry, however, is not clear. Cell chirality, a recently discovered and intrinsic LR asymmetric cellular morphological property, has been implicated in the heart looping and vascular barrier function. In this paper, we summarize recent advances in the field of cell chirality and describe various approaches developed for studying cell chirality at multi- and single-cell levels. We also examine research progress in asymmetric cardiovascular development and associated malformations. Finally, we review evidence connecting cell chirality to cardiac looping and vascular permeability and provide thoughts on future research directions for cell chirality in the context of cardiovascular development and disease.
Collapse
Affiliation(s)
- Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Jie Fan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | |
Collapse
|
5
|
Gómez F, Mejía-Salazar JR, Albella P. All-Dielectric Chiral Metasurfaces Based on Crossed-Bowtie Nanoantennas. ACS OMEGA 2019; 4:21041-21047. [PMID: 31867495 PMCID: PMC6921257 DOI: 10.1021/acsomega.9b02381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/08/2019] [Indexed: 05/22/2023]
Abstract
Circular dichroism spectroscopy is a technique used to discriminate molecular chirality, which is essential in fields like biology, chemistry, or pharmacology where different chiral agents often show different biological activities. Nevertheless, due to the inherently weak molecular-chiroptical activity, this technique is limited to high concentrations or large analyte volumes. Finding novel ways to enhance the circular dichroism would boost the performance of these techniques. So far, the enhancement of light-matter interaction mediated by plasmons is the most common way to develop chiral plasmonic structures with extraordinarily strong chiroptical responses. However, absorptive losses of metals at optical frequencies has hindered its practical use in many scenarios. In this work, we propose an all-dielectric low-loss chiral metasurface with unit cells built by high-refractive-index crossed-bowtie nanoantennas. These unit cells, built of silicon, strongly increase the chiroptical effect through the simultaneous interaction of their electric and magnetic modes, which in contrast to other recent proposals shows at the same time a high concentration of the electric field in its gap that leads to the presence of hotspots. The proposed structure exhibits a circular dichroism spectra up to 3-fold higher than that of previous proposals that use complex plasmonic or hybrid nanostructures, making it a clear alternative to develop low-loss metasurfaces with potential applications in chiral target sensing/biosensing. For completeness, single triangular shaped and symmetric (achiral) bowtie nanostructures were also studied as possible candidates for a detection up to the single-molecule level due the lack of a circular dichroism background of the nanostructures themselves.
Collapse
Affiliation(s)
| | - J. Ricardo Mejía-Salazar
- National
Institute of Telecommunications
(Inatel), Santa
Rita do Sapucaí, MG 37540-000, Brazil
- E-mail: (J.R.M.-S.)
| | - Pablo Albella
- Department
of Applied Physics, University of Cantabria, Avda. Los Castros, s/n, Santander 39005, Spain
- E-mail: (P.A.)
| |
Collapse
|
6
|
B. George A, Korolev KS. Chirality provides a direct fitness advantage and facilitates intermixing in cellular aggregates. PLoS Comput Biol 2018; 14:e1006645. [PMID: 30589836 PMCID: PMC6307711 DOI: 10.1371/journal.pcbi.1006645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/15/2018] [Indexed: 12/23/2022] Open
Abstract
Chirality in shape and motility can evolve rapidly in microbes and cancer cells. To determine how chirality affects cell fitness, we developed a model of chiral growth in compact aggregates such as microbial colonies and solid tumors. Our model recapitulates previous experimental findings and shows that mutant cells can invade by increasing their chirality or switching their handedness. The invasion results either in a takeover or stable coexistence between the mutant and the ancestor depending on their relative chirality. For large chiralities, the coexistence is accompanied by strong intermixing between the cells, while spatial segregation occurs otherwise. We show that the competition within the aggregate is mediated by bulges in regions where the cells with different chiralities meet. The two-way coupling between aggregate shape and natural selection is described by the chiral Kardar-Parisi-Zhang equation coupled to the Burgers’ equation with multiplicative noise. We solve for the key features of this theory to explain the origin of selection on chirality. Overall, our work suggests that chirality could be an important ecological trait that mediates competition, invasion, and spatial structure in cellular populations. Is it better to be left- or right-handed? The answer depends on whether the goal is making a handshake or winning a boxing match. The need for coordination favors the handedness of the majority, but being different could also provide an advantage. The same rules could apply to microbial colonies and cancer tumors. Like humans, cells often have handedness (chirality) that reflects the lack of mirror symmetry in their shapes or movement patterns. We find that cells gain a substantial fitness advantage by either increasing the magnitude of their chirality or switching to the opposite handedness. Selection for specific chirality can overcome differences in growth rate and is mediated by the formation of bulges along the colony edge in regions where cells with different chiralities meet.
Collapse
Affiliation(s)
- Ashish B. George
- Department of Physics, Boston University, Boston, Massachusetts, United States of America
- * E-mail: (ABG); (KSK)
| | - Kirill S. Korolev
- Department of Physics and Graduate Program in Bioinformatics, Boston University, Boston, Massachusetts, United States of America
- * E-mail: (ABG); (KSK)
| |
Collapse
|
7
|
Liu W, Bao Y, Lam ML, Xu T, Xie K, Man HS, Chan EY, Zhu N, Lam RHW, Chen TH. Nanowire Magnetoscope Reveals a Cellular Torque with Left-Right Bias. ACS NANO 2016; 10:7409-7417. [PMID: 27389867 DOI: 10.1021/acsnano.6b01142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cellular force regulates many types of cell mechanics and the associated physiological behaviors. Recent evidence suggested that cell motion with left-right (LR) bias may be the origin of LR asymmetry in tissue architecture. As actomyosin activity was found essential in the process, it predicts a type of cellular force that coordinates the development of LR asymmetry in tissue formation. However, due to the lack of appropriate platform, cellular force with LR bias has not yet been found. Here we report a nanowire magnetoscope that reveals a rotating force-torque-exerted by cells. Ferromagnetic nanowires were deposited and internalized by micropatterned cells. Within a uniform, horizontal magnetic field, the nanowires that initially aligned with the magnetic field were subsequently rotated due to the cellular torque. We found that the torque is LR-biased depending on cell types. While NIH 3T3 fibroblasts and human vascular endothelial cells exhibited counterclockwise torque, C2C12 myoblasts showed torque with slight clockwise bias. Moreover, an actin ring composed of transverse arcs and radial fibers was identified as a major factor determining the LR bias of cellular torque, since the disruption of actin ring by biochemical inhibitors or elongated cell shape abrogated the counterclockwise bias of NIH 3T3 fibroblasts. Our finding reveals a LR-biased torque of single cells and a fundamental origin of cytoskeletal chirality. More broadly, we anticipate that our method will provide a different perspective on mechanics-related cell physiology and force transmission necessary for LR propagation in tissue formation.
Collapse
Affiliation(s)
| | | | - Miu Ling Lam
- CityU Shenzhen Research Institute , Shenzhen, 518057, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Most snails are coiled clockwise, but in some species rare genetic variants with reverse coiling occur. Now, a molecular determinant of coiling direction has been identified, the cytoskeletal regulator formin.
Collapse
|
9
|
Davison A, McDowell GS, Holden JM, Johnson HF, Koutsovoulos GD, Liu MM, Hulpiau P, Van Roy F, Wade CM, Banerjee R, Yang F, Chiba S, Davey JW, Jackson DJ, Levin M, Blaxter ML. Formin Is Associated with Left-Right Asymmetry in the Pond Snail and the Frog. Curr Biol 2016; 26:654-60. [PMID: 26923788 PMCID: PMC4791482 DOI: 10.1016/j.cub.2015.12.071] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/01/2015] [Accepted: 12/29/2015] [Indexed: 01/29/2023]
Abstract
While components of the pathway that establishes left-right asymmetry have been identified in diverse animals, from vertebrates to flies, it is striking that the genes involved in the first symmetry-breaking step remain wholly unknown in the most obviously chiral animals, the gastropod snails. Previously, research on snails was used to show that left-right signaling of Nodal, downstream of symmetry breaking, may be an ancestral feature of the Bilateria [1 and 2]. Here, we report that a disabling mutation in one copy of a tandemly duplicated, diaphanous-related formin is perfectly associated with symmetry breaking in the pond snail. This is supported by the observation that an anti-formin drug treatment converts dextral snail embryos to a sinistral phenocopy, and in frogs, drug inhibition or overexpression by microinjection of formin has a chirality-randomizing effect in early (pre-cilia) embryos. Contrary to expectations based on existing models [3, 4 and 5], we discovered asymmetric gene expression in 2- and 4-cell snail embryos, preceding morphological asymmetry. As the formin-actin filament has been shown to be part of an asymmetry-breaking switch in vitro [6 and 7], together these results are consistent with the view that animals with diverse body plans may derive their asymmetries from the same intracellular chiral elements [8].
Collapse
Affiliation(s)
- Angus Davison
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Gary S McDowell
- Center for Regenerative and Developmental Biology, and Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Jennifer M Holden
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Harriet F Johnson
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - M Maureen Liu
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Paco Hulpiau
- Department for Biomedical Molecular Biology, Ghent University, and Inflammation Research Center (IRC), VIB, 9052 Ghent, Belgium
| | - Frans Van Roy
- Department for Biomedical Molecular Biology, Ghent University, and Inflammation Research Center (IRC), VIB, 9052 Ghent, Belgium
| | - Christopher M Wade
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ruby Banerjee
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Satoshi Chiba
- Community and Ecosystem Ecology, Division of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | - John W Davey
- Department for Biomedical Molecular Biology, Ghent University, and Inflammation Research Center (IRC), VIB, 9052 Ghent, Belgium
| | - Daniel J Jackson
- Department of Geobiology, University of Göttingen, Göttingen 37077, Germany
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Mark L Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK; Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
10
|
Naganathan SR, Middelkoop TC, Fürthauer S, Grill SW. Actomyosin-driven left-right asymmetry: from molecular torques to chiral self organization. Curr Opin Cell Biol 2016; 38:24-30. [DOI: 10.1016/j.ceb.2016.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
|