1
|
Mamaeva A, Makeeva A, Ganaeva D. The Small Key to the Treasure Chest: Endogenous Plant Peptides Involved in Symbiotic Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:378. [PMID: 39942939 PMCID: PMC11820598 DOI: 10.3390/plants14030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Plant growth and development are inextricably connected with rhizosphere organisms. Plants have to balance between strong defenses against pathogens while modulating their immune responses to recruit beneficial organisms such as bacteria and fungi. In recent years, there has been increasing evidence that regulatory peptides are essential in establishing these symbiotic relationships, orchestrating processes that include nutrient acquisition, root architecture modification, and immune modulation. In this review, we provide a comprehensive summary of the peptide families that facilitate beneficial relationships between plants and rhizosphere organisms.
Collapse
Affiliation(s)
- Anna Mamaeva
- Laboratory of System Analysis of Proteins and Peptides, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.M.)
| | | | | |
Collapse
|
2
|
Huang Y, Feng ZF, Li F, Hou YM. Host-Encoded Aminotransferase Import into the Endosymbiotic Bacteria Nardonella of Red Palm Weevil. INSECTS 2024; 15:35. [PMID: 38249041 PMCID: PMC10816905 DOI: 10.3390/insects15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Symbiotic systems are intimately integrated at multiple levels. Host-endosymbiont metabolic complementarity in amino acid biosynthesis is especially important for sap-feeding insects and their symbionts. In weevil-Nardonella endosymbiosis, the final step reaction of the endosymbiont tyrosine synthesis pathway is complemented by host-encoded aminotransferases. Based on previous results from other insects, we suspected that these aminotransferases were likely transported into the Nardonella cytoplasm to produce tyrosine. Here, we identified five aminotransferase genes in the genome of the red palm weevil. Using quantitative real-time RT-PCR, we confirmed that RfGOT1 and RfGOT2A were specifically expressed in the bacteriome. RNA interference targeting these two aminotransferase genes reduced the tyrosine level in the bacteriome. The immunofluorescence-FISH double labeling localization analysis revealed that RfGOT1 and RfGOT2A were present within the bacteriocyte, where they colocalized with Nardonella cells. Immunogold transmission electron microscopy demonstrated the localization of RfGOT1 and RfGOT2A in the cytosol of Nardonella and the bacteriocyte. Our data revealed that RfGOT1 and RfGOT2A are transported into the Nardonella cytoplasm to collaborate with genes retained in the Nardonella genome in order to synthesize tyrosine. The results of our study will enhance the understanding of the integration of host and endosymbiont metabolism in amino acid biosynthesis.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Z.-F.F.); (F.L.)
- Department of Plant Protection, Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen-Feng Feng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Z.-F.F.); (F.L.)
- Department of Plant Protection, Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fan Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Z.-F.F.); (F.L.)
- Department of Plant Protection, Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Z.-F.F.); (F.L.)
- Department of Plant Protection, Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Zhang R, Shen Y, He J, Zhang C, Ma Y, Sun C, Song X, Li L, Zhang S, Biró JB, Saifi F, Kaló P, Chen R. Nodule-specific cysteine-rich peptide 343 is required for symbiotic nitrogen fixation in Medicago truncatula. PLANT PHYSIOLOGY 2023; 193:1897-1912. [PMID: 37555448 DOI: 10.1093/plphys/kiad454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Symbiotic interactions between legumes and rhizobia lead to the development of root nodules and nitrogen fixation by differentiated bacteroids within nodules. Differentiation of the endosymbionts is reversible or terminal, determined by plant effectors. In inverted repeat lacking clade legumes, nodule-specific cysteine-rich (NCR) peptides control the terminal differentiation of bacteroids. Medicago truncatula contains ∼700 NCR-coding genes. However, the role of few NCR peptides has been demonstrated. Here, we report characterization of fast neutron 2106 (FN2106), a symbiotic nitrogen fixation defective (fix-) mutant of M. truncatula. Using a transcript-based approach, together with linkage and complementation tests, we showed that loss-of-function of NCR343 results in impaired bacteroid differentiation and/or maintenance and premature nodule senescence of the FN2106 mutant. NCR343 was specifically expressed in nodules. Subcellular localization studies showed that the functional NCR343-YFP fusion protein colocalizes with bacteroids in symbiosomes in infected nodule cells. Transcriptomic analyses identified senescence-, but not defense-related genes, as being significantly upregulated in ncr343 (FN2106) nodules. Taken together, results from our phenotypic and transcriptomic analyses of a loss-of-function ncr343 mutant demonstrate an essential role of NCR343 in bacteroid differentiation and/or maintenance required for symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Rui Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yitong Shen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Juanxia He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Chenyan Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yelin Ma
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Chenghui Sun
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaopan Song
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Li Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Sisi Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - János Barnabás Biró
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Szeged, Hungary
| | - Farheen Saifi
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Péter Kaló
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Szeged, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Rujin Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
4
|
Gao F, Yang J, Zhai N, Zhang C, Ren X, Zeng Y, Chen Y, Chen R, Pan H. NCR343 is required to maintain the viability of differentiated bacteroids in nodule cells in Medicago truncatula. THE NEW PHYTOLOGIST 2023; 240:815-829. [PMID: 37533094 DOI: 10.1111/nph.19180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Bacteroid (name for rhizobia inside nodule cells) differentiation is a prerequisite for successful nitrogen-fixing symbiosis. In certain legumes, under the regulation of host proteins, for example, a large group of NCR (nodule cysteine rich) peptides, bacteroids undergo irreversible terminal differentiation. This process causes them to lose the ability to propagate inside nodule cells while boosting their competency for nitrogen fixation. How host cells maintain the viability of differentiated bacteroids while maximizing their nitrogen-reducing activities remains elusive. Here, through mutant screen, map-based cloning, and genetic complementation, we find that NCR343 is required for the viability of differentiated bacteroids. In Medicago truncatula debino1 mutant, differentiated bacteroids decay prematurely, and NCR343 is proved to be the casual gene for debino1. NCR343 is mainly expressed in the nodule fixation zone, where bacteroids are differentiated. In nodule cells, mature NCR343 peptide is secreted into the symbiosomes. RNA-Seq assay shows that many stress-responsive genes are significantly induced in debino1 bacteroids. Additionally, a group of stress response-related rhizobium proteins are identified as putative interacting partners of NCR343. In summary, our findings demonstrate that beyond promoting bacteroid differentiation, NCR peptides are also required in maintaining the viability of differentiated bacteroids.
Collapse
Affiliation(s)
- Fengzhan Gao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Jian Yang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Niu Zhai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Chao Zhang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xinru Ren
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yating Zeng
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yuhui Chen
- College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rujin Chen
- College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huairong Pan
- College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
5
|
Larrainzar E. It's Not You, It's Me: Medicago truncatula efd-1 Mutant Phenotype Depends on Rhizobium Symbiont. PLANT & CELL PHYSIOLOGY 2023; 64:4-6. [PMID: 36383174 PMCID: PMC9933620 DOI: 10.1093/pcp/pcac162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Estíbaliz Larrainzar
- Institute for Multidisciplinary Applied Biology (IMAB), Public University of Navarre (UPNA), Campus Arrosadia, Pamplona 31006, Spain
| |
Collapse
|
6
|
Jardinaud MF, Carrere S, Gourion B, Gamas P. Symbiotic Nodule Development and Efficiency in the Medicago truncatula Mtefd-1 Mutant Is Highly Dependent on Sinorhizobium Strains. PLANT & CELL PHYSIOLOGY 2023; 64:27-42. [PMID: 36151948 DOI: 10.1093/pcp/pcac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation (SNF) can play a key role in agroecosystems to reduce the negative impact of nitrogen fertilizers. Its efficiency is strongly affected by the combination of bacterial and plant genotypes, but the mechanisms responsible for the differences in the efficiency of rhizobium strains are not well documented. In Medicago truncatula, SNF has been mostly studied using model systems, such as M. truncatula A17 in interaction with Sinorhizobium meliloti Sm2011. Here we analyzed both the wild-type (wt) A17 and the Mtefd-1 mutant in interaction with five S. meliloti and two Sinorhizobium medicae strains. ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE DIFFERENTIATION (MtEFD) encodes a transcription factor, which contributes to the control of nodule number and differentiation in M. truncatula. We found that, in contrast to Sm2011, four strains induce functional (Fix+) nodules in Mtefd-1, although less efficient for SNF than in wt A17. In contrast, the Mtefd-1 hypernodulation phenotype is not strain-dependent. We compared the plant nodule transcriptomes in response to SmBL225C, a highly efficient strain with A17, versus Sm2011, in wt and Mtefd-1 backgrounds. This revealed faster nodule development with SmBL225C and early nodule senescence with Sm2011. These RNA sequencing analyses allowed us to identify candidate plant factors that could drive the differential nodule phenotype. In conclusion, this work shows the value of having a set of rhizobium strains to fully evaluate the biological importance of a plant symbiotic gene.
Collapse
Affiliation(s)
- Marie-Françoise Jardinaud
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Sebastien Carrere
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Benjamin Gourion
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Pascal Gamas
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| |
Collapse
|
7
|
Minguillón S, Matamoros MA, Duanmu D, Becana M. Signaling by reactive molecules and antioxidants in legume nodules. THE NEW PHYTOLOGIST 2022; 236:815-832. [PMID: 35975700 PMCID: PMC9826421 DOI: 10.1111/nph.18434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Legume nodules are symbiotic structures formed as a result of the interaction with rhizobia. Nodules fix atmospheric nitrogen into ammonia that is assimilated by the plant and this process requires strict metabolic regulation and signaling. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved as signal molecules at all stages of symbiosis, from rhizobial infection to nodule senescence. Also, reactive sulfur species (RSS) are emerging as important signals for an efficient symbiosis. Homeostasis of reactive molecules is mainly accomplished by antioxidant enzymes and metabolites and is essential to allow redox signaling while preventing oxidative damage. Here, we examine the metabolic pathways of reactive molecules and antioxidants with an emphasis on their functions in signaling and protection of symbiosis. In addition to providing an update of recent findings while paying tribute to original studies, we identify several key questions. These include the need of new methodologies to detect and quantify ROS, RNS, and RSS, avoiding potential artifacts due to their short lifetimes and tissue manipulation; the regulation of redox-active proteins by post-translational modification; the production and exchange of reactive molecules in plastids, peroxisomes, nuclei, and bacteroids; and the unknown but expected crosstalk between ROS, RNS, and RSS in nodules.
Collapse
Affiliation(s)
- Samuel Minguillón
- Departamento de BiologíaVegetal, Estación Experimental de Aula DeiConsejo Superior de Investigaciones CientíficasApartado 1303450080ZaragozaSpain
| | - Manuel A. Matamoros
- Departamento de BiologíaVegetal, Estación Experimental de Aula DeiConsejo Superior de Investigaciones CientíficasApartado 1303450080ZaragozaSpain
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Manuel Becana
- Departamento de BiologíaVegetal, Estación Experimental de Aula DeiConsejo Superior de Investigaciones CientíficasApartado 1303450080ZaragozaSpain
| |
Collapse
|
8
|
Sankari S, Babu VM, Bian K, Alhhazmi A, Andorfer MC, Avalos DM, Smith TA, Yoon K, Drennan CL, Yaffe MB, Lourido S, Walker GC. A haem-sequestering plant peptide promotes iron uptake in symbiotic bacteria. Nat Microbiol 2022; 7:1453-1465. [PMID: 35953657 PMCID: PMC9420810 DOI: 10.1038/s41564-022-01192-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Symbiotic partnerships with rhizobial bacteria enable legumes to grow without nitrogen fertilizer because rhizobia convert atmospheric nitrogen gas into ammonia via nitrogenase. After Sinorhizobium meliloti penetrate the root nodules that they have elicited in Medicago truncatula, the plant produces a family of about 700 nodule cysteine-rich (NCR) peptides that guide the differentiation of endocytosed bacteria into nitrogen-fixing bacteroids. The sequences of the NCR peptides are related to the defensin class of antimicrobial peptides, but have been adapted to play symbiotic roles. Using a variety of spectroscopic, biophysical and biochemical techniques, we show here that the most extensively characterized NCR peptide, 24 amino acid NCR247, binds haem with nanomolar affinity. Bound haem molecules and their iron are initially made biologically inaccessible through the formation of hexamers (6 haem/6 NCR247) and then higher-order complexes. We present evidence that NCR247 is crucial for effective nitrogen-fixing symbiosis. We propose that by sequestering haem and its bound iron, NCR247 creates a physiological state of haem deprivation. This in turn induces an iron-starvation response in rhizobia that results in iron import, which itself is required for nitrogenase activity. Using the same methods as for L-NCR247, we show that the D-enantiomer of NCR247 can bind and sequester haem in an equivalent manner. The special abilities of NCR247 and its D-enantiomer to sequester haem suggest a broad range of potential applications related to human health.
Collapse
Affiliation(s)
- Siva Sankari
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vignesh M.P. Babu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ke Bian
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Areej Alhhazmi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mary C. Andorfer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Dante M. Avalos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Tyler A. Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kwan Yoon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Catherine L. Drennan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Michael B. Yaffe
- Departments of Biology and Biological Engineering, and Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA 02139, USA.,Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Sebastian Lourido
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
9
|
Sainz MM, Filippi CV, Eastman G, Sotelo-Silveira J, Borsani O, Sotelo-Silveira M. Analysis of Thioredoxins and Glutaredoxins in Soybean: Evidence of Translational Regulation under Water Restriction. Antioxidants (Basel) 2022; 11:1622. [PMID: 36009341 PMCID: PMC9405309 DOI: 10.3390/antiox11081622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Soybean (Glycine max (L.) Merr.) establishes symbiosis with rhizobacteria, developing the symbiotic nodule, where the biological nitrogen fixation (BNF) occurs. The redox control is key for guaranteeing the establishment and correct function of the BNF process. Plants have many antioxidative systems involved in ROS homeostasis and signaling, among them a network of thio- and glutaredoxins. Our group is particularly interested in studying the differential response of nodulated soybean plants to water-deficit stress. To shed light on this phenomenon, we set up an RNA-seq experiment (for total and polysome-associated mRNAs) with soybean roots comprising combined treatments including the hydric and the nodulation condition. Moreover, we performed the initial identification and description of the complete repertoire of thioredoxins (Trx) and glutaredoxins (Grx) in soybean. We found that water deficit altered the expression of a greater number of differentially expressed genes (DEGs) than the condition of plant nodulation. Among them, we identified 12 thioredoxin (Trx) and 12 glutaredoxin (Grx) DEGs, which represented a significant fraction of the detected GmTrx and GmGrx in our RNA-seq data. Moreover, we identified an enriched network in which a GmTrx and a GmGrx interacted with each other and associated through several types of interactions with nitrogen metabolism enzymes.
Collapse
Affiliation(s)
- María Martha Sainz
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo 12900, Uruguay
| | - Carla Valeria Filippi
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo 12900, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo 11600, Uruguay
- Department of Biology, University of Virginia, 485 McCormick Rd., Charlottesville, VA 22904, USA
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo 11600, Uruguay
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Omar Borsani
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo 12900, Uruguay
| | - Mariana Sotelo-Silveira
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo 12900, Uruguay
| |
Collapse
|
10
|
Lima RM, Rathod BB, Tiricz H, Howan DHO, Al Bouni MA, Jenei S, Tímár E, Endre G, Tóth GK, Kondorosi É. Legume Plant Peptides as Sources of Novel Antimicrobial Molecules Against Human Pathogens. Front Mol Biosci 2022; 9:870460. [PMID: 35755814 PMCID: PMC9218685 DOI: 10.3389/fmolb.2022.870460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/18/2022] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides are prominent components of the plant immune system acting against a wide variety of pathogens. Legume plants from the inverted repeat lacking clade (IRLC) have evolved a unique gene family encoding nodule-specific cysteine-rich NCR peptides acting in the symbiotic cells of root nodules, where they convert their bacterial endosymbionts into non-cultivable, polyploid nitrogen-fixing cells. NCRs are usually 30–50 amino acids long peptides having a characteristic pattern of 4 or 6 cysteines and highly divergent amino acid composition. While the function of NCRs is largely unknown, antimicrobial activity has been demonstrated for a few cationic Medicago truncatula NCR peptides against bacterial and fungal pathogens. The advantages of these plant peptides are their broad antimicrobial spectrum, fast killing modes of actions, multiple bacterial targets, and low propensity to develop resistance to them and no or low cytotoxicity to human cells. In the IRLC legumes, the number of NCR genes varies from a few to several hundred and it is possible that altogether hundreds of thousands of different NCR peptides exist. Due to the need for new antimicrobial agents, we investigated the antimicrobial potential of 104 synthetic NCR peptides from M. truncatula, M. sativa, Pisum sativum, Galega orientalis and Cicer arietinum against eight human pathogens, including ESKAPE bacteria. 50 NCRs showed antimicrobial activity with differences in the antimicrobial spectrum and effectivity. The most active peptides eliminated bacteria at concentrations from 0.8 to 3.1 μM. High isoelectric point and positive net charge were important but not the only determinants of their antimicrobial activity. Testing the activity of shorter peptide derivatives against Acinetobacter baumannii and Candida albicans led to identification of regions responsible for the antimicrobial activity and provided insight into their potential modes of action. This work provides highly potent lead molecules without hemolytic activity on human blood cells for novel antimicrobial drugs to fight against pathogens.
Collapse
Affiliation(s)
- Rui M Lima
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | | | - Hilda Tiricz
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Dian H O Howan
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | | | - Sándor Jenei
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Edit Tímár
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Gabriella Endre
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Éva Kondorosi
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| |
Collapse
|
11
|
Jardinaud MF, Fromentin J, Auriac MC, Moreau S, Pecrix Y, Taconnat L, Cottret L, Aubert G, Balzergue S, Burstin J, Carrere S, Gamas P. MtEFD and MtEFD2: Two transcription factors with distinct neofunctionalization in symbiotic nodule development. PLANT PHYSIOLOGY 2022; 189:1587-1607. [PMID: 35471237 PMCID: PMC9237690 DOI: 10.1093/plphys/kiac177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2022] [Indexed: 05/31/2023]
Abstract
Rhizobium-legume nitrogen-fixing symbiosis involves the formation of a specific organ, the root nodule, which provides bacteria with the proper cellular environment for atmospheric nitrogen fixation. Coordinated differentiation of plant and bacterial cells is an essential step of nodule development, for which few transcriptional regulators have been characterized. Medicago truncatula ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE DIFFERENTIATION (MtEFD) encodes an APETALA2/ETHYLENE RESPONSIVE FACTOR (ERF) transcription factor, the mutation of which leads to both hypernodulation and severe defects in nodule development. MtEFD positively controls a negative regulator of cytokinin signaling, the RESPONSE REGULATOR 4 (MtRR4) gene. Here we showed that that the Mtefd-1 mutation affects both plant and bacterial endoreduplication in nodules, as well as the expression of hundreds of genes in young and mature nodules, upstream of known regulators of symbiotic differentiation. MtRR4 expressed with the MtEFD promoter complemented Mtefd-1 hypernodulation but not the nodule differentiation phenotype. Unexpectedly, a nonlegume homolog of MtEFD, AtERF003 in Arabidopsis (Arabidopsis thaliana), could efficiently complement both phenotypes of Mtefd-1, in contrast to the MtEFD paralog MtEFD2 expressed in the root and nodule meristematic zone. A domain swap experiment showed that MtEFD2 differs from MtEFD by its C-terminal fraction outside the DNA binding domain. Furthermore, clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9) mutagenesis of MtEFD2 led to a reduction in the number of nodules formed in Mtefd-1, with downregulation of a set of genes, including notably NUCLEAR FACTOR-YA1 (MtNF-YA1) and MtNF-YB16, which are essential for nodule meristem establishment. We, therefore, conclude that nitrogen-fixing symbiosis recruited two proteins originally expressed in roots, MtEFD and MtEFD2, with distinct functions and neofunctionalization processes for each of them.
Collapse
Affiliation(s)
| | | | | | - Sandra Moreau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | | | - Ludovic Cottret
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Grégoire Aubert
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Judith Burstin
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Carrere
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | |
Collapse
|
12
|
Pacoud M, Mandon K, Cazareth J, Pierre O, Frendo P, Alloing G. Redox-sensitive fluorescent biosensors detect Sinorhizobium meliloti intracellular redox changes under free-living and symbiotic lifestyles. Free Radic Biol Med 2022; 184:185-195. [PMID: 35390454 DOI: 10.1016/j.freeradbiomed.2022.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Reactive oxygen species such as hydrogen peroxide (H2O2) are key signaling molecules that control the setup and functioning of Rhizobium-legume symbiosis. This interaction results in the formation of a new organ, the root nodule, in which bacteria enter the host cells and differentiate into nitrogen (N2)-fixing bacteroids. The interaction between Sinorhizobium meliloti and Medicago truncatula is a genetic model to study N2-fixing symbiosis. In previous work, S. meliloti mutants impaired in the antioxidant defense, showed altered symbiotic properties, emphasizing the importance of redox-based regulation in the bacterial partner. However, direct measurements of S. meliloti intracellular redox state have never been performed. Here, we measured dynamic changes of intracellular H2O2 and glutathione redox potential by expressing roGFP2-Orp1 and Grx1-roGFP2 biosensors in S. meliloti. Kinetic analyses of redox changes under free-living conditions showed that these biosensors are suitable to monitor the bacterial redox state in real-time, after H2O2 challenge and in different genetic backgrounds. In planta, flow cytometry and confocal imaging experiments allowed the determination of sensor oxidation state in nodule bacteria. These cellular studies establish the existence of an oxidative shift in the redox status of S. meliloti during bacteroid differentiation. Our findings open up new possibilities for in vivo studies of redox dynamics during N2-fixing symbiosis.
Collapse
Affiliation(s)
- Marie Pacoud
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | - Karine Mandon
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | - Julie Cazareth
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, Valbonne, France
| | - Olivier Pierre
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | - Pierre Frendo
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | | |
Collapse
|
13
|
Feng J, Lee T, Schiessl K, Oldroyd GED. Processing of NODULE INCEPTION controls the transition to nitrogen fixation in root nodules. Science 2021; 374:629-632. [PMID: 34709900 DOI: 10.1126/science.abg2804] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jian Feng
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Tak Lee
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.,Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Katharina Schiessl
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.,Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| |
Collapse
|
14
|
Mandon K, Nazaret F, Farajzadeh D, Alloing G, Frendo P. Redox Regulation in Diazotrophic Bacteria in Interaction with Plants. Antioxidants (Basel) 2021; 10:antiox10060880. [PMID: 34070926 PMCID: PMC8226930 DOI: 10.3390/antiox10060880] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Plants interact with a large number of microorganisms that greatly influence their growth and health. Among the beneficial microorganisms, rhizosphere bacteria known as Plant Growth Promoting Bacteria increase plant fitness by producing compounds such as phytohormones or by carrying out symbioses that enhance nutrient acquisition. Nitrogen-fixing bacteria, either as endophytes or as endosymbionts, specifically improve the growth and development of plants by supplying them with nitrogen, a key macro-element. Survival and proliferation of these bacteria require their adaptation to the rhizosphere and host plant, which are particular ecological environments. This adaptation highly depends on bacteria response to the Reactive Oxygen Species (ROS), associated to abiotic stresses or produced by host plants, which determine the outcome of the plant-bacteria interaction. This paper reviews the different antioxidant defense mechanisms identified in diazotrophic bacteria, focusing on their involvement in coping with the changing conditions encountered during interaction with plant partners.
Collapse
Affiliation(s)
- Karine Mandon
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Fanny Nazaret
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Davoud Farajzadeh
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz 5375171379, Iran;
- Center for International Scientific Studies and Collaboration (CISSC), Ministry of Science, Research and Technology, Tehran 158757788, Iran
| | - Geneviève Alloing
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Pierre Frendo
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
- Correspondence:
| |
Collapse
|
15
|
Prediction and Activity of a Cationic α-Helix Antimicrobial Peptide ZM-804 from Maize. Int J Mol Sci 2021; 22:ijms22052643. [PMID: 33807972 PMCID: PMC7961353 DOI: 10.3390/ijms22052643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are small molecules consisting of less than fifty residues of amino acids. Plant AMPs establish the first barrier of defense in the innate immune system in response to invading pathogens. The purpose of this study was to isolate new AMPs from the Zea mays L. inbred line B73 and investigate their antimicrobial activities and mechanisms against certain essential plant pathogenic bacteria. In silico, the Collection of Anti-Microbial Peptides (CAMPR3), a computational AMP prediction server, was used to screen a cDNA library for AMPs. A ZM-804 peptide, isolated from the Z. mays L. inbred line B73 cDNA library, was predicted as a new cationic AMP with high prediction values. ZM-804 was tested against eleven pathogens of Gram-negative and Gram-positive bacteria and exhibited high antimicrobial activities as determined by the minimal inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs). A confocal laser scanning microscope observation showed that the ZM-804 AMP targets bacterial cell membranes. SEM and TEM images revealed the disruption and damage of the cell membrane morphology of Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato (Pst) DC3000 caused by ZM-804. In planta, ZM-804 demonstrated antimicrobial activity and prevented the infection of tomato plants by Pst DC3000. Moreover, four virulent phytopathogenic bacteria were prevented from inducing hypersensitive response (HR) in tobacco leaves in response to low ZM-804 concentrations. ZM-804 exhibits low hemolytic activity against mouse red blood cells (RBCs) and is relatively safe for mammalian cells. In conclusion, the ZM-804 peptide has a strong antibacterial activity and provides an alternative tool for plant disease control. Additionally, the ZM-804 peptide is considered a promising candidate for human and animal drug development.
Collapse
|
16
|
Lima RM, Kylarová S, Mergaert P, Kondorosi É. Unexplored Arsenals of Legume Peptides With Potential for Their Applications in Medicine and Agriculture. Front Microbiol 2020; 11:1307. [PMID: 32625188 PMCID: PMC7314904 DOI: 10.3389/fmicb.2020.01307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
During endosymbiosis, bacteria live intracellularly in the symbiotic organ of their host. The host controls the proliferation of endosymbionts and prevents their spread to other tissues and organs. In Rhizobium-legume symbiosis the major host effectors are secreted nodule-specific cysteine-rich (NCR) peptides, produced exclusively in the symbiotic cells. NCRs have evolved in the Inverted Repeat Lacking Clade (IRLC) of the Leguminosae family. They are secreted peptides that mediate terminal differentiation of the endosymbionts, forming polyploid, non-cultivable cells with increased membrane permeability. NCRs form an extremely large family of peptides, which have four or six conserved cysteines but otherwise highly diverse amino acid sequences, resulting in a wide variety of anionic, neutral and cationic peptides. In vitro, many synthetic NCRs have strong antimicrobial activities against both Gram-negative and Gram-positive bacteria, including the ESKAPE strains and pathogenic fungi. The spectra and minimal bactericidal and anti-fungal concentrations of NCRs differ, indicating that, in addition to their charge, the amino acid composition and sequence also play important roles in their antimicrobial activity. NCRs attack the bacteria and fungi at the cell envelope and membrane as well as intracellularly, forming interactions with multiple essential cellular machineries. NCR-like peptides with similar symbiotic functions as the NCRs also exist in other branches of the Leguminosae family. Thus, legumes provide countless and so far unexplored sources of symbiotic peptides representing an enormous resource of pharmacologically interesting molecules.
Collapse
Affiliation(s)
- Rui M Lima
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Salome Kylarová
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Éva Kondorosi
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
17
|
Roy P, Achom M, Wilkinson H, Lagunas B, Gifford ML. Symbiotic Outcome Modified by the Diversification from 7 to over 700 Nodule-Specific Cysteine-Rich Peptides. Genes (Basel) 2020; 11:E348. [PMID: 32218172 PMCID: PMC7230169 DOI: 10.3390/genes11040348] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/22/2020] [Indexed: 12/31/2022] Open
Abstract
Legume-rhizobium symbiosis represents one of the most successfully co-evolved mutualisms. Within nodules, the bacterial cells undergo distinct metabolic and morphological changes and differentiate into nitrogen-fixing bacteroids. Legumes in the inverted repeat lacking clade (IRLC) employ an array of defensin-like small secreted peptides (SSPs), known as nodule-specific cysteine-rich (NCR) peptides, to regulate bacteroid differentiation and activity. While most NCRs exhibit bactericidal effects in vitro, studies confirm that inside nodules they target the bacterial cell cycle and other cellular pathways to control and extend rhizobial differentiation into an irreversible (or terminal) state where the host gains control over bacteroids. While NCRs are well established as positive regulators of effective symbiosis, more recent findings also suggest that NCRs affect partner compatibility. The extent of bacterial differentiation has been linked to species-specific size and complexity of the NCR gene family that varies even among closely related species, suggesting a more recent origin of NCRs followed by rapid expansion in certain species. NCRs have diversified functionally, as well as in their expression patterns and responsiveness, likely driving further functional specialisation. In this review, we evaluate the functions of NCR peptides and their role as a driving force underlying the outcome of rhizobial symbiosis, where the plant is able to determine the outcome of rhizobial interaction in a temporal and spatial manner.
Collapse
Affiliation(s)
- Proyash Roy
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1205, Bangladesh
| | - Mingkee Achom
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, NY 14853, USA
| | - Helen Wilkinson
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
| | - Beatriz Lagunas
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
| | - Miriam L. Gifford
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
| |
Collapse
|
18
|
Yang L, El Msehli S, Benyamina S, Lambert A, Hopkins J, Cazareth J, Pierre O, Hérouart D, Achi-Smiti S, Boncompagni E, Frendo P. Glutathione Deficiency in Sinorhizobium meliloti Does Not Impair Bacteroid Differentiation But Induces Early Senescence in the Interaction With Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2020; 11:137. [PMID: 32194584 PMCID: PMC7063052 DOI: 10.3389/fpls.2020.00137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Under nitrogen-limiting conditions, legumes are able to interact symbiotically with bacteria of the Rhizobiaceae family. This interaction gives rise to a new organ, named a root nodule. Root nodules are characterized by an increased glutathione (GSH) and homoglutathione (hGSH) content compared to roots. These low molecular thiols are very important in the biological nitrogen fixation. In order to characterize the modification of nodule activity induced by the microsymbiont glutathione deficiency, physiological, biochemical, and gene expression modifications were analyzed in nodules after the inoculation of Medicago truncatula with the SmgshB mutant of Sinorhizobium meliloti which is deficient in GSH production. The decline in nitrogen fixation efficiency was correlated to the reduction in plant shoot biomass. Flow cytometry analysis showed that SmgshB bacteroids present a higher DNA content than free living bacteria. Live/dead microscopic analysis showed an early bacteroid degradation in SmgshB nodules compared to control nodules which is correlated to a lower bacteroid content at 20 dpi. Finally, the expression of two marker genes involved in nitrogen fixation metabolism, Leghemoglobin and Nodule Cysteine Rich Peptide 001, decreased significantly in mutant nodules at 20 dpi. In contrast, the expression of two marker genes involved in the nodule senescence, Cysteine Protease 6 and Purple Acid Protease, increased significantly in mutant nodules at 10 dpi strengthening the idea that an early senescence process occurs in SmgshB nodules. In conclusion, our results showed that bacterial GSH deficiency does not impair bacterial differentiation but induces an early nodule senescence.
Collapse
Affiliation(s)
- Li Yang
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Sarra El Msehli
- Laboratoire de Physiologie Végétale, Faculté des Sciences de Tunis, Campus Universitaire El Manar II, Tunis, Tunisia
| | | | - Annie Lambert
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Julie Hopkins
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Julie Cazareth
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, Valbonne, France
| | - Olivier Pierre
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Didier Hérouart
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Samira Achi-Smiti
- Laboratoire de Physiologie Végétale, Faculté des Sciences de Tunis, Campus Universitaire El Manar II, Tunis, Tunisia
| | - Eric Boncompagni
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Pierre Frendo
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| |
Collapse
|
19
|
Syska C, Brouquisse R, Alloing G, Pauly N, Frendo P, Bosseno M, Dupont L, Boscari A. Molecular Weapons Contribute to Intracellular Rhizobia Accommodation Within Legume Host Cell. FRONTIERS IN PLANT SCIENCE 2019; 10:1496. [PMID: 31850013 PMCID: PMC6902015 DOI: 10.3389/fpls.2019.01496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The interaction between legumes and bacteria of rhizobia type results in a beneficial symbiotic relationship characterized by the formation of new root organs, called nodules. Within these nodules the bacteria, released in plant cells, differentiate into bacteroids and fix atmospheric nitrogen through the nitrogenase activity. This mutualistic interaction has evolved sophisticated signaling networks to allow rhizobia entry, colonization, bacteroid differentiation and persistence in nodules. Nodule cysteine rich (NCR) peptides, reactive oxygen species (ROS), reactive nitrogen species (RNS), and toxin-antitoxin (TA) modules produced by the host plants or bacterial microsymbionts have a major role in the control of the symbiotic interaction. These molecules described as weapons in pathogenic interactions have evolved to participate to the intracellular bacteroid accommodation by escaping control of plant innate immunity and adapt the functioning of the nitrogen-fixation to environmental signalling cues.
Collapse
Affiliation(s)
- Camille Syska
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | | | | | - Nicolas Pauly
- Laboratoire des Interactions Plantes-Microorganismes, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Pierre Frendo
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Marc Bosseno
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Laurence Dupont
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | | |
Collapse
|
20
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Mergaert P. Role of antimicrobial peptides in controlling symbiotic bacterial populations. Nat Prod Rep 2019; 35:336-356. [PMID: 29393944 DOI: 10.1039/c7np00056a] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 Antimicrobial peptides (AMPs) have been known for well over three decades as crucial mediators of the innate immune response in animals and plants, where they are involved in the killing of infecting microbes. However, AMPs have now also been found to be produced by eukaryotic hosts during symbiotic interactions with bacteria. These symbiotic AMPs target the symbionts and therefore have a more subtle biological role: not eliminating the microbial symbiont population but rather keeping it in check. The arsenal of AMPs and the symbionts' adaptations to resist them are in a careful balance, which contributes to the establishment of the host-microbe homeostasis. Although in many cases the biological roles of symbiotic AMPs remain elusive, for a number of symbiotic interactions, precise functions have been assigned or proposed to the AMPs, which are discussed here. The microbiota living on epithelia in animals, from the most primitive ones to the mammals, are challenged by a cocktail of AMPs that determine the specific composition of the bacterial community as well as its spatial organization. In the symbiosis of legume plants with nitrogen-fixing rhizobium bacteria, the host deploys an extremely large panel of AMPs - called nodule-specific cysteine-rich (NCR) peptides - that drive the bacteria into a terminally differentiated state and manipulate the symbiont physiology to maximize the benefit for the host. The NCR peptides are used as tools to enslave the bacterial symbionts, limiting their reproduction but keeping them metabolically active for nitrogen fixation. In the nutritional symbiotic interactions of insects and protists that have vertically transmitted bacterial symbionts with reduced genomes, symbiotic AMPs could facilitate the integration of the endosymbiont and host metabolism by favouring the flow of metabolites across the symbiont membrane through membrane permeabilization.
Collapse
Affiliation(s)
- P Mergaert
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
22
|
Combined application of biochar and PGPR consortia for sustainable production of wheat under semiarid conditions with a reduced dose of synthetic fertilizer. Braz J Microbiol 2019; 50:449-458. [PMID: 30671922 DOI: 10.1007/s42770-019-00043-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022] Open
Abstract
This study investigates the combined effect of locally adopted plant growth promoting rhizobacteria (PGPR), biochar, and synthetic fertilizer on the wheat crop for the production and economic returns. A total of 20 PGPR strains were isolated from three different ecological zones of Pakistan and were evaluated. Of them, three isolates were selected for further studies. The treatments included (i) control with a full dose of the recommended fertilizer, (ii) control with half a dose of the fertilizer, (iii) PGPR consortia with half a dose of the fertilizer, (iv) biochar with half a dose of the fertilizer, and (v) PGPR + biochar with half a dose of the fertilizer. The study was repeated at three different locations. The data collected for leaf area index (LAI), grain yield, biological yield, straw yield, and harvest index (HI) revealed significant differences (P ≤ 0.05) for the locations and treatments, but the interaction of location and treatments was not significant. Based on the productivity and economic returns, the treatment with PGPR + biochar with half a dose of the fertilizer proved to be the best. Thus, the use of the PGPR consortia and biochar can improve the yield and profit of wheat crop with reduced synthetic fertilization. Graphical abstract ᅟ.
Collapse
|
23
|
Alloing G, Mandon K, Boncompagni E, Montrichard F, Frendo P. Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia. Antioxidants (Basel) 2018; 7:E182. [PMID: 30563061 PMCID: PMC6315971 DOI: 10.3390/antiox7120182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 01/08/2023] Open
Abstract
Leguminous plants can form a symbiotic relationship with Rhizobium bacteria, during which plants provide bacteria with carbohydrates and an environment appropriate to their metabolism, in return for fixed atmospheric nitrogen. The symbiotic interaction leads to the formation of a new organ, the root nodule, where a coordinated differentiation of plant cells and bacteria occurs. The establishment and functioning of nitrogen-fixing symbiosis involves a redox control important for both the plant-bacteria crosstalk and the regulation of nodule metabolism. In this review, we discuss the involvement of thioredoxin and glutaredoxin systems in the two symbiotic partners during symbiosis. The crucial role of glutathione in redox balance and S-metabolism is presented. We also highlight the specific role of some thioredoxin and glutaredoxin systems in bacterial differentiation. Transcriptomics data concerning genes encoding components and targets of thioredoxin and glutaredoxin systems in connection with the developmental step of the nodule are also considered in the model system Medicago truncatula⁻Sinorhizobium meliloti.
Collapse
Affiliation(s)
| | | | | | - Françoise Montrichard
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé CEDEX, France.
| | | |
Collapse
|
24
|
Becana M, Wienkoop S, Matamoros MA. Sulfur Transport and Metabolism in Legume Root Nodules. FRONTIERS IN PLANT SCIENCE 2018; 9:1434. [PMID: 30364181 PMCID: PMC6192434 DOI: 10.3389/fpls.2018.01434] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/10/2018] [Indexed: 05/10/2023]
Abstract
Sulfur is an essential nutrient in plants as a constituent element of some amino acids, metal cofactors, coenzymes, and secondary metabolites. Not surprisingly, sulfur deficiency decreases plant growth, photosynthesis, and seed yield in both legumes and non-legumes. In nodulated legumes, sulfur supply is positively linked to symbiotic nitrogen fixation (SNF) and sulfur starvation causes three additional major effects: decrease of nodulation, inhibition of SNF, and slowing down of nodule metabolism. These effects are due, at least in part, to the impairment of nitrogenase biosynthesis and activity, the accumulation of nitrogen-rich amino acids, and the decline in leghemoglobin, ferredoxin, ATP, and glucose in nodules. During the last decade, some major advances have been made about the uptake and metabolism of sulfur in nodules. These include the identification of the sulfate transporter SST1 in the symbiosomal membrane, the finding that glutathione produced in the bacteroids and host cells is essential for nodule activity, and the demonstration that sulfur assimilation in the whole plant is reprogrammed during symbiosis. However, many crucial questions still remain and some examples follow. In the first place, it is of paramount importance to elucidate the mechanism by which sulfur deficiency limits SNF. It is unknown why homoglutahione replaces glutathione as a major water-soluble antioxidant, redox buffer, and sulfur reservoir, among other relevant functions, only in certain legumes and also in different tissues of the same legume species. Much more work is required to identify oxidative post-translational modifications entailing cysteine and methionine residues and to determine how these modifications affect protein function and metabolism in nodules. Likewise, most interactions of antioxidant metabolites and enzymes bearing redox-active sulfur with transcription factors need to be defined. Solving these questions will pave the way to decipher sulfur-dependent mechanisms that regulate SNF, thereby gaining a deep insight into how nodulated legumes adapt to the fluctuating availability of nutrients in the soil.
Collapse
Affiliation(s)
- Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Manuel A. Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| |
Collapse
|
25
|
Stonoha-Arther C, Wang D. Tough love: accommodating intracellular bacteria through directed secretion of antimicrobial peptides during the nitrogen-fixing symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:155-163. [PMID: 29778978 DOI: 10.1016/j.pbi.2018.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/20/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
The symbiosis formed by nitrogen-fixing bacteria with plant hosts mainly in the legume family involves a very intimate interaction. Within the symbiotic organ (the nodule) the bacteria are fully internalized by the host cell to become an intracellular organelle surrounded by a host-derived membrane. This arrangement is probably necessary for the efficient provision of energy and the sequestration of free oxygen molecules, two conditions required for sustained nitrogen fixation. Recent advances made in model legume species, such as Medicago truncatula, are beginning to uncover the genetic components allowing rhizobia to access the host cytoplasm and establish chronic intracellular infections without overt detrimental effects. It is now known that the rhizobial compartment in M. truncatula cells, the symbiosome, retains some features of the extracellular space as the target for a redirected host protein secretory pathway. A set of vesicle trafficking proteins function specifically in symbiotic cells to ensure the faithful delivery of secretory proteins to the intracellular bacteria, or bacteroid. This system is co-opted from the more ancient association with arbuscular mycorrhizal fungi found in most land plants, highlighting the evolutionary origin of the legume-rhizobia symbiosis. In some legume lineages, this heightened capability to process secretory proteins is needed to deliver a large number of symbiosis-specific antimicrobial peptides to the bacteria. Known as NCR peptides, these molecules transform bacteroids into a state of terminal differentiation, where the microbe loses its ability to proliferate outside their host. Numbering in their hundreds, these peptides manipulate various aspects of rhizobial biology, and affect the outcome of this symbiosis in complex ways. The extreme size of the NCR peptide family seems to be the result of an evolutionary conflict between the two partners to extract maximum benefit from each other.
Collapse
Affiliation(s)
| | - Dong Wang
- Plant Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003, USA.
| |
Collapse
|
26
|
Nowack ECM, Weber APM. Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:51-84. [PMID: 29489396 DOI: 10.1146/annurev-arplant-042817-040209] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The conversion of free-living cyanobacteria to photosynthetic organelles of eukaryotic cells through endosymbiosis transformed the biosphere and eventually provided the basis for life on land. Despite the presumable advantage conferred by the acquisition of photoautotrophy through endosymbiosis, only two independent cases of primary endosymbiosis have been documented: one that gave rise to the Archaeplastida, and the other to photosynthetic species of the thecate, filose amoeba Paulinella. Here, we review recent genomics-informed insights into the primary endosymbiotic origins of cyanobacteria-derived organelles. Furthermore, we discuss the preconditions for the evolution of nitrogen-fixing organelles. Recent genomic data on previously undersampled cyanobacterial and protist taxa provide new clues to the origins of the host cell and endosymbiont, and proteomic approaches allow insights into the rearrangement of the endosymbiont proteome during organellogenesis. We conclude that in addition to endosymbiotic gene transfers, horizontal gene acquisitions from a broad variety of prokaryotic taxa were crucial to organelle evolution.
Collapse
Affiliation(s)
- Eva C M Nowack
- Microbial Symbiosis and Organelle Evolution Group, Biology Department, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany;
| |
Collapse
|
27
|
Lang C, Smith LS, Haney CH, Long SR. Characterization of Novel Plant Symbiosis Mutants Using a New Multiple Gene-Expression Reporter Sinorhizobium meliloti Strain. FRONTIERS IN PLANT SCIENCE 2018; 9:76. [PMID: 29467773 PMCID: PMC5808326 DOI: 10.3389/fpls.2018.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
The formation of nitrogen fixing root nodules by Medicago truncatula and Sinorhizobium meliloti requires communication between both organisms and coordinated differentiation of plant and bacterial cells. After an initial signal exchange, the bacteria invade the tissue of the growing nodule via plant-derived tubular structures, called infection threads. The bacteria are released from the infection threads into invasion-competent plant cells, where they differentiate into nitrogen-fixing bacteroids. Both organisms undergo dramatic transcriptional, metabolic and morphological changes during nodule development. To identify plant processes that are essential for the formation of nitrogen fixing nodules after nodule development has been initiated, large scale mutageneses have been conducted to discover underlying plant symbiosis genes. Such screens yield numerous uncharacterized plant lines with nitrogen fixation deficient nodules. In this study, we report construction of a S. meliloti strain carrying four distinct reporter constructs to reveal stages of root nodule development. The strain contains a constitutively expressed lacZ reporter construct; a PexoY-mTFP fusion that is expressed in infection threads but not in differentiated bacteroids; a PbacA-mcherry construct that is expressed in infection threads and during bacteroid differentiation; and a PnifH-uidA construct that is expressed during nitrogen fixation. We used this strain together with fluorescence microscopy to study nodule development over time in wild type nodules and to characterize eight plant mutants from a fast neutron bombardment screen. Based on the signal intensity and the localization patterns of the reporter genes, we grouped mutants with similar phenotypes and placed them in a developmental context.
Collapse
Affiliation(s)
| | | | | | - Sharon R. Long
- Gilbert Lab, Department of Biology, Stanford University, Stanford, CA, United States
| |
Collapse
|
28
|
Coba de la Peña T, Fedorova E, Pueyo JJ, Lucas MM. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle? FRONTIERS IN PLANT SCIENCE 2018; 8:2229. [PMID: 29403508 PMCID: PMC5786577 DOI: 10.3389/fpls.2017.02229] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/19/2017] [Indexed: 05/21/2023]
Abstract
In legume nodules, symbiosomes containing endosymbiotic rhizobial bacteria act as temporary plant organelles that are responsible for nitrogen fixation, these bacteria develop mutual metabolic dependence with the host legume. In most legumes, the rhizobia infect post-mitotic cells that have lost their ability to divide, although in some nodules cells do maintain their mitotic capacity after infection. Here, we review what is currently known about legume symbiosomes from an evolutionary and developmental perspective, and in the context of the different interactions between diazotroph bacteria and eukaryotes. As a result, it can be concluded that the symbiosome possesses organelle-like characteristics due to its metabolic behavior, the composite origin and differentiation of its membrane, the retargeting of host cell proteins, the control of microsymbiont proliferation and differentiation by the host legume, and the cytoskeletal dynamics and symbiosome segregation during the division of rhizobia-infected cells. Different degrees of symbiosome evolution can be defined, specifically in relation to rhizobial infection and to the different types of nodule. Thus, our current understanding of the symbiosome suggests that it might be considered a nitrogen-fixing link in organelle evolution and that the distinct types of legume symbiosomes could represent different evolutionary stages toward the generation of a nitrogen-fixing organelle.
Collapse
Affiliation(s)
- Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Elena Fedorova
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
29
|
Becana M, Wienkoop S, Matamoros MA. Sulfur Transport and Metabolism in Legume Root Nodules. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30364181 DOI: 10.3389/fpls.2018:01434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sulfur is an essential nutrient in plants as a constituent element of some amino acids, metal cofactors, coenzymes, and secondary metabolites. Not surprisingly, sulfur deficiency decreases plant growth, photosynthesis, and seed yield in both legumes and non-legumes. In nodulated legumes, sulfur supply is positively linked to symbiotic nitrogen fixation (SNF) and sulfur starvation causes three additional major effects: decrease of nodulation, inhibition of SNF, and slowing down of nodule metabolism. These effects are due, at least in part, to the impairment of nitrogenase biosynthesis and activity, the accumulation of nitrogen-rich amino acids, and the decline in leghemoglobin, ferredoxin, ATP, and glucose in nodules. During the last decade, some major advances have been made about the uptake and metabolism of sulfur in nodules. These include the identification of the sulfate transporter SST1 in the symbiosomal membrane, the finding that glutathione produced in the bacteroids and host cells is essential for nodule activity, and the demonstration that sulfur assimilation in the whole plant is reprogrammed during symbiosis. However, many crucial questions still remain and some examples follow. In the first place, it is of paramount importance to elucidate the mechanism by which sulfur deficiency limits SNF. It is unknown why homoglutahione replaces glutathione as a major water-soluble antioxidant, redox buffer, and sulfur reservoir, among other relevant functions, only in certain legumes and also in different tissues of the same legume species. Much more work is required to identify oxidative post-translational modifications entailing cysteine and methionine residues and to determine how these modifications affect protein function and metabolism in nodules. Likewise, most interactions of antioxidant metabolites and enzymes bearing redox-active sulfur with transcription factors need to be defined. Solving these questions will pave the way to decipher sulfur-dependent mechanisms that regulate SNF, thereby gaining a deep insight into how nodulated legumes adapt to the fluctuating availability of nutrients in the soil.
Collapse
Affiliation(s)
- Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Manuel A Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| |
Collapse
|
30
|
Massive Protein Import into the Early-Evolutionary-Stage Photosynthetic Organelle of the Amoeba Paulinella chromatophora. Curr Biol 2017; 27:2763-2773.e5. [DOI: 10.1016/j.cub.2017.08.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 01/03/2023]
|
31
|
Genome-Wide Sensitivity Analysis of the Microsymbiont Sinorhizobium meliloti to Symbiotically Important, Defensin-Like Host Peptides. mBio 2017; 8:mBio.01060-17. [PMID: 28765224 PMCID: PMC5539429 DOI: 10.1128/mbio.01060-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The model legume species Medicago truncatula expresses more than 700 nodule-specific cysteine-rich (NCR) signaling peptides that mediate the differentiation of Sinorhizobium meliloti bacteria into nitrogen-fixing bacteroids. NCR peptides are essential for a successful symbiosis in legume plants of the inverted-repeat-lacking clade (IRLC) and show similarity to mammalian defensins. In addition to signaling functions, many NCR peptides exhibit antimicrobial activity in vitro and in vivo. Bacterial resistance to these antimicrobial activities is likely to be important for symbiosis. However, the mechanisms used by S. meliloti to resist antimicrobial activity of plant peptides are poorly understood. To address this, we applied a global genetic approach using transposon mutagenesis followed by high-throughput sequencing (Tn-seq) to identify S. meliloti genes and pathways that increase or decrease bacterial competitiveness during exposure to the well-studied cationic NCR247 peptide and also to the unrelated model antimicrobial peptide polymyxin B. We identified 78 genes and several diverse pathways whose interruption alters S. meliloti resistance to NCR247. These genes encode the following: (i) cell envelope polysaccharide biosynthesis and modification proteins, (ii) inner and outer membrane proteins, (iii) peptidoglycan (PG) effector proteins, and (iv) non-membrane-associated factors such as transcriptional regulators and ribosome-associated factors. We describe a previously uncharacterized yet highly conserved peptidase, which protects S. meliloti from NCR247 and increases competitiveness during symbiosis. Additionally, we highlight a considerable number of uncharacterized genes that provide the basis for future studies to investigate the molecular basis of symbiotic development as well as chronic pathogenic interactions. Soil rhizobial bacteria enter into an ecologically and economically important symbiotic interaction with legumes, in which they differentiate into physiologically distinct bacteroids that provide essential ammonia to the plant in return for carbon sources. Plant signal peptides are essential and specific to achieve these physiological changes. These peptides show similarity to mammalian defensin peptides which are part of the first line of defense to control invading bacterial populations. A number of these legume peptides are indeed known to possess antimicrobial activity, and so far, only the bacterial BacA protein is known to protect rhizobial bacteria against their antimicrobial action. This study identified numerous additional bacterial factors that mediate protection and belong to diverse biological pathways. Our results significantly contribute to our understanding of the molecular roles of bacterial factors during legume symbioses and, second, provide insights into the mechanisms that pathogenic bacteria may use to resist the antimicrobial effects of defensins during infections.
Collapse
|
32
|
Mergaert P, Kikuchi Y, Shigenobu S, Nowack ECM. Metabolic Integration of Bacterial Endosymbionts through Antimicrobial Peptides. Trends Microbiol 2017; 25:703-712. [PMID: 28549825 DOI: 10.1016/j.tim.2017.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 01/05/2023]
Abstract
Antimicrobial peptides (AMPs) are massively produced by eukaryotic hosts during symbiotic interactions with bacteria. Among other roles, these symbiotic AMPs have the capacity to permeabilize symbiont membranes and facilitate metabolite flow across the host-symbiont interface. We propose that an ancestral role of these peptides is to facilitate metabolic exchange between the symbiotic partners through membrane permeabilization. This function may be particularly critical for integration of endosymbiont and host metabolism in interactions involving bacteria with strongly reduced genomes lacking most small metabolite transporters. Moreover, AMPs could have acted in a similar way at the onset of plastid and mitochondrion evolution, after a host cell took up a bacterium and needed to extract nutrients from it in the absence of dedicated solute transporters.
Collapse
Affiliation(s)
- Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, Japan; Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | - Eva C M Nowack
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
33
|
Pan H, Wang D. Nodule cysteine-rich peptides maintain a working balance during nitrogen-fixing symbiosis. NATURE PLANTS 2017; 3:17048. [PMID: 28470183 DOI: 10.1038/nplants.2017.48] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/14/2017] [Indexed: 05/06/2023]
Abstract
The nitrogen-fixing symbiosis between legumes and rhizobia is highly relevant to human society and global ecology. One recent breakthrough in understanding the molecular interplay between the plant and the prokaryotic partner is that, at least in certain legumes, the host deploys a number of antimicrobial peptides, called nodule cysteine-rich (NCR) peptides, to control the outcome of this symbiosis. Under this plant dominance, the bacteria are subject to the sub-lethal toxicity of these antimicrobial peptides, resulting in limited reproductive potential. However, recent genetic studies have added unexpected twists to this mechanism: certain NCR peptides are essential for the bacteria to adapt to the intracellular environment needed for a successful symbiosis, and the absence of these peptides can break down the mutualism. Meanwhile, some rhizobial strains have evolved a peptidase to specifically degrade these antimicrobial peptides, allowing the bacteria to escape host control. These findings challenge the preconceptions about 'antimicrobial' peptides, supporting the notion that their role in biotic interactions extends beyond toxicity to the microbial partners.
Collapse
Affiliation(s)
- Huairong Pan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts 01003, USA
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts 01003, USA
- Plant Biology Graduate Program, University of Massachusetts Amherst, Massachusetts 01003, USA
| |
Collapse
|