1
|
Demler C, Lawlor JC, Yelin R, Llivichuzcha-Loja D, Shaulov L, Kim D, Stewart M, Lee FK, Shylo N, Trainor PA, Schultheiss TM, Kurpios NA. An atypical basement membrane forms a midline barrier during left-right asymmetric gut development in the chicken embryo. eLife 2025; 12:RP89494. [PMID: 40298919 PMCID: PMC12040318 DOI: 10.7554/elife.89494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Correct intestinal morphogenesis depends on the early embryonic process of gut rotation, an evolutionarily conserved program in which a straight gut tube elongates and forms into its first loops. However, the gut tube requires guidance to loop in a reproducible manner. The dorsal mesentery (DM) connects the gut tube to the body and directs the lengthening gut into stereotypical loops via left-right (LR) asymmetric cellular and extracellular behavior. The LR asymmetry of the DM also governs blood and lymphatic vessel formation for the digestive tract, which is essential for prenatal organ development and postnatal vital functions including nutrient absorption. Although the genetic LR asymmetry of the DM has been extensively studied, a divider between the left and right DM has yet to be identified. Setting up LR asymmetry for the entire body requires a Lefty1+ midline barrier to separate the two sides of the embryo, without it, embryos have lethal or congenital LR patterning defects. Individual organs including the brain, heart, and gut also have LR asymmetry, and while the consequences of left and right signals mixing are severe or even lethal, organ-specific mechanisms for separating these signals remain poorly understood. Here, we uncover a midline structure composed of a transient double basement membrane, which separates the left and right halves of the embryonic chick DM during the establishment of intestinal and vascular asymmetries. Unlike other basement membranes of the DM, the midline is resistant to disruption by intercalation of Netrin4 (Ntn4). We propose that this atypical midline forms the boundary between left and right sides and functions as a barrier necessary to establish and protect organ asymmetry.
Collapse
Affiliation(s)
- Cora Demler
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - John C Lawlor
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Dhana Llivichuzcha-Loja
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Lihi Shaulov
- Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | - David Kim
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Megan Stewart
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Frank K Lee
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Natalia Shylo
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Paul A Trainor
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Anatomy and Cell Biology, University of Kansas Medical CenterKansas CityUnited States
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| |
Collapse
|
2
|
Demler C, Lawlor JC, Yelin R, Llivichuzcha-Loja D, Shaulov L, Kim D, Stewart M, Lee F, Shylo NA, Trainor PA, Schultheiss T, Kurpios NA. An atypical basement membrane forms a midline barrier during left-right asymmetric gut development in the chicken embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553395. [PMID: 37645918 PMCID: PMC10461973 DOI: 10.1101/2023.08.15.553395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Correct intestinal morphogenesis depends on the early embryonic process of gut rotation, an evolutionarily conserved program in which a straight gut tube elongates and forms into its first loops. However, the gut tube requires guidance to loop in a reproducible manner. The dorsal mesentery (DM) connects the gut tube to the body and directs the lengthening gut into stereotypical loops via left-right (LR) asymmetric cellular and extracellular behavior. The LR asymmetry of the DM also governs blood and lymphatic vessel formation for the digestive tract, which is essential for prenatal organ development and postnatal vital functions including nutrient absorption. Although the genetic LR asymmetry of the DM has been extensively studied, a divider between the left and right DM has yet to be identified. Setting up LR asymmetry for the entire body requires a Lefty1+ midline barrier to separate the two sides of the embryo, without it, embryos have lethal or congenital LR patterning defects. Individual organs including the brain, heart, and gut also have LR asymmetry, and while the consequences of left and right signals mixing are severe or even lethal, organ-specific mechanisms for separating these signals are poorly understood. Here, we uncover a midline structure composed of a transient double basement membrane, which separates the left and right halves of the embryonic chick DM during the establishment of intestinal and vascular asymmetries. Unlike other basement membranes of the DM, the midline is resistant to disruption by intercalation of Netrin4 (Ntn4). We propose that this atypical midline forms the boundary between left and right sides and functions as a barrier necessary to establish and protect organ asymmetry.
Collapse
Affiliation(s)
- Cora Demler
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - John Coates Lawlor
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Dhana Llivichuzcha-Loja
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lihi Shaulov
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - David Kim
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Megan Stewart
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Missouri, USA
| | - Thomas Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Natasza A. Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Petri N, Vetrova A, Tsikolia N, Kremnyov S. Molecular anatomy of emerging Xenopus left-right organizer at successive developmental stages. Dev Dyn 2024. [PMID: 38934270 DOI: 10.1002/dvdy.722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Vertebrate left-right symmetry breaking is preceded by formation of left-right organizer. In Amphibian, this structure is formed by gastrocoel roof plate, which emerges from superficial suprablastoporal cells. GRP is subdivided into medial area, which generates leftward flow by rotating monocilia and lateral Nodal1 expressing areas, which are involved in sensing of the flow. After successful symmetry breaking, medial cells are incorporated into a deep layer where they contribute to the axial mesoderm, while lateral domains join somitic mesoderm. RESULTS Here, we performed detailed analysis of spatial and temporal gene expression of important markers and the corresponding morphology of emerging GRP. Endodermal marker Sox17 and markers of superficial mesoderm display complementary patterns at all studied stages. At early stages, GRP forms Tekt2 positive epithelial domain clearly separated from underlying deep layers, while at later stages, this separation disappears. Marker of early somitic mesoderm MyoD1 was absent in emerging GRP and was induced together with Nodal1 during early neurulation. Decreasing morphological separation is accompanied by lateral to medial covering of GRP by endoderm. CONCLUSION Our data supports continuous link between superficial mesoderm at the start of gastrulation and mature GRP and suggests late induction of somitic fate in lateral GRP.
Collapse
Affiliation(s)
- Natalia Petri
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| | - Alexandra Vetrova
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| | - Nikoloz Tsikolia
- Institute of Anatomy and Cell Biology, University Medical Center Göttingen, Gottingen, Germany
| | - Stanislav Kremnyov
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|
4
|
Petri N, Nordbrink R, Tsikolia N, Kremnyov S. Abnormal left-right organizer and laterality defects in Xenopus embryos after formin inhibitor SMIFH2 treatment. PLoS One 2022; 17:e0275164. [PMCID: PMC9639825 DOI: 10.1371/journal.pone.0275164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Left-right symmetry breaking in most studied vertebrates makes use of so-called leftward flow, a mechanism which was studied in detail especially in mouse and Xenopus laevis embryos and is based on rotation of monocilia on specialized epithelial surface designated as left-right organizer or laterality coordinator. However, it has been argued that prior to emergence of leftward flow an additional mechanism operates during early cleavage stages in Xenopus embryo which is based on cytoskeletal processes. Evidence in favour of this early mechanism was supported by left-right abnormalities after chemical inhibition of cytoskeletal protein formin. Here we analyzed temporal dimension of this effect in detail and found that reported abnormalities arise only after treatment at gastrula-neurula stages, i.e. just prior to and during the operation of left-right organizer. Moreover, molecular and morphological analysis of the left-right organizer reveals its abnormal development. Our results strongly indicate that left-right abnormalities reported after formin inhibition cannot serve as support of models based on early symmetry breaking event in Xenopus embryo.
Collapse
Affiliation(s)
- Natalia Petri
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rhea Nordbrink
- Anatomy and Embryology, University Medicine Göttingen, Göttingen, Germany
| | - Nikoloz Tsikolia
- Anatomy and Embryology, University Medicine Göttingen, Göttingen, Germany
- * E-mail: (NT); (SK)
| | - Stanislav Kremnyov
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
- * E-mail: (NT); (SK)
| |
Collapse
|
5
|
Djenoune L, Berg K, Brueckner M, Yuan S. A change of heart: new roles for cilia in cardiac development and disease. Nat Rev Cardiol 2022; 19:211-227. [PMID: 34862511 PMCID: PMC10161238 DOI: 10.1038/s41569-021-00635-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Although cardiac abnormalities have been observed in a growing class of human disorders caused by defective primary cilia, the function of cilia in the heart remains an underexplored area. The primary function of cilia in the heart was long thought to be restricted to left-right axis patterning during embryogenesis. However, new findings have revealed broad roles for cilia in congenital heart disease, valvulogenesis, myocardial fibrosis and regeneration, and mechanosensation. In this Review, we describe advances in our understanding of the mechanisms by which cilia function contributes to cardiac left-right axis development and discuss the latest findings that highlight a broader role for cilia in cardiac development. Specifically, we examine the growing line of evidence connecting cilia function to the pathogenesis of congenital heart disease. Furthermore, we also highlight research from the past 10 years demonstrating the role of cilia function in common cardiac valve disorders, including mitral valve prolapse and aortic valve disease, and describe findings that implicate cardiac cilia in mechanosensation potentially linking haemodynamic and contractile forces with genetic regulation of cardiac development and function. Finally, given the presence of cilia on cardiac fibroblasts, we also explore the potential role of cilia in fibrotic growth and summarize the evidence implicating cardiac cilia in heart regeneration.
Collapse
Affiliation(s)
- Lydia Djenoune
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Berg
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Martina Brueckner
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| | - Shiaulou Yuan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Blum M, Ott T. Mechanical strain, novel genes and evolutionary insights: news from the frog left-right organizer. Curr Opin Genet Dev 2019; 56:8-14. [DOI: 10.1016/j.gde.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/24/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
|
7
|
Abstract
For over a century, the centrosome has been an organelle more easily tracked than understood, and the study of its peregrinations within the cell remains a chief underpinning of its functional investigation. Increasing attention and new approaches have been brought to bear on mechanisms that control centrosome localization in the context of cleavage plane determination, ciliogenesis, directional migration, and immunological synapse formation, among other cellular and developmental processes. The Golgi complex, often linked with the centrosome, presents a contrasting case of a pleiomorphic organelle for which functional studies advanced somewhat more rapidly than positional tracking. However, Golgi orientation and distribution has emerged as an area of considerable interest with respect to polarized cellular function. This chapter will review our current understanding of the mechanism and significance of the positioning of these organelles.
Collapse
|