1
|
Chao SB, Zhang RR, Sun QY. Localization and function of APC15 during mouse oocyte meiotic progression. J Mol Histol 2025; 56:121. [PMID: 40153087 DOI: 10.1007/s10735-025-10404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/19/2025] [Indexed: 03/30/2025]
Abstract
The Anaphase-Promoting Complex/Cyclosome (APC/C) is a critical regulator of cell cycle progression, with APC15 serving as an essential subunit. While the role of APC15 in mitosis is well characterized, its function during meiosis remains poorly understood. In this study, we investigated the expression, subcellular localization, and potential role of APC15 during mouse oocyte meiotic progression. Using immunofluorescence and confocal microscopy, we observed dynamic changes in APC15 localization throughout meiotic progression. Knockdown of APC15 via siRNA did not affect spindle organization, but led to meiotic arrest at metaphase I (MI) and impaired the removal of BUB3 from kinetochores, suggesting a disruption in Spindle Assembly Checkpoint (SAC) inactivation. Our results highlight the involvement of APC15 in the regulation of SAC and the transition from metaphase to anaphase in oocytes. These findings contribute to our understanding of APC15's role in meiotic regulation and provide insights into its potential impact on maintaining chromosomal stability during oocyte maturation.
Collapse
Affiliation(s)
- Shi-Bin Chao
- Reproductive Medicine Center, Yancheng Maternal and Child Health Care Hospital Affiliated to Yangzhou University, Yancheng, Jiangsu, China
- Department of Clinical Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, China
| | - Ren-Ren Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health and Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China.
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
2
|
Ibrahim B. Dynamics of spindle assembly and position checkpoints: Integrating molecular mechanisms with computational models. Comput Struct Biotechnol J 2025; 27:321-332. [PMID: 39897055 PMCID: PMC11782880 DOI: 10.1016/j.csbj.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Mitotic checkpoints orchestrate cell division through intricate molecular networks that ensure genomic stability. While experimental research has uncovered key aspects of checkpoint function, the complexity of protein interactions and spatial dynamics necessitates computational modeling for a deeper, system-level understanding. This review explores mathematical frameworks-from ordinary differential equations to stochastic simulations, which reveal checkpoint dynamics across multiple scales, encompassing models ranging from simple protein interactions to whole-system simulations with thousands of parameters. These approaches have elucidated fundamental properties, including bistable switches driving spindle assembly checkpoint (SAC) activation, spatial organization principles underlying spindle position checkpoint (SPOC) signaling, and critical system-level features ensuring checkpoint robustness. This study evaluates diverse modeling approaches, from rule-based models to chemical organization theory, highlighting their successful application in predicting protein localization patterns and checkpoint response dynamics validated through live-cell imaging. Contemporary challenges persist in integrating spatial and temporal scales, refining parameter estimation, and enhancing spatial modeling fidelity. However, recent advances in single-molecule imaging, data-driven algorithms, and machine learning techniques, particularly deep learning for parameter optimization, present transformative opportunities for improving model accuracy and predictive power. By bridging molecular mechanisms with system-level behaviors through validated computational frameworks, this review offers a comprehensive perspective on the mathematical modeling of cell cycle control, with practical implications for cancer research and therapeutic development.
Collapse
Affiliation(s)
- Bashar Ibrahim
- Department of Mathematics & Natural Sciences and Centre for Applied Mathematics & Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
- Department of Mathematics and Computer Science, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, Jena, 07743, Germany
- European Virus Bioinformatics Center, Leutragraben 1, Jena, 07743, Germany
| |
Collapse
|
3
|
Sun L, Chen X, Song C, Shi W, Liu L, Bai S, Wang X, Chen J, Jiang C, Wang SM, Luo ZQ, Wang R, Wang Y, Jin QW. Negative regulation of APC/C activation by MAPK-mediated attenuation of Cdc20 Slp1 under stress. eLife 2024; 13:RP97896. [PMID: 39412391 PMCID: PMC11483130 DOI: 10.7554/elife.97896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Mitotic anaphase onset is a key cellular process tightly regulated by multiple kinases. The involvement of mitogen-activated protein kinases (MAPKs) in this process has been established in Xenopus egg extracts. However, the detailed regulatory cascade remains elusive, and it is also unknown whether the MAPK-dependent mitotic regulation is evolutionarily conserved in the single-cell eukaryotic organisms such as fission yeast (Schizosaccharomyces pombe). Here, we show that two MAPKs in S. pombe indeed act in concert to restrain anaphase-promoting complex/cyclosome (APC/C) activity upon activation of the spindle assembly checkpoint (SAC). One MAPK, Pmk1, binds to and phosphorylates Slp1Cdc20, the co-activator of APC/C. Phosphorylation of Slp1Cdc20 by Pmk1, but not by Cdk1, promotes its subsequent ubiquitylation and degradation. Intriguingly, Pmk1-mediated phosphorylation event is also required to sustain SAC under environmental stress. Thus, our study establishes a new underlying molecular mechanism of negative regulation of APC/C by MAPK upon stress stimuli, and provides a previously unappreciated framework for regulation of anaphase entry in eukaryotic cells.
Collapse
Affiliation(s)
- Li Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Xuejin Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Chunlin Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Wenjing Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Libo Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Shuang Bai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Xi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Jiali Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Chengyu Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Shuang-min Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Zhou-qing Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Ruiwen Wang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou UniversityFuzhouChina
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Quan-wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| |
Collapse
|
4
|
Iglesias-Romero AB, Soto T, Flor-Parra I, Salas-Pino S, Ruiz-Romero G, Gould KL, Cansado J, Daga RR. MAPK-dependent control of mitotic progression in S. pombe. BMC Biol 2024; 22:71. [PMID: 38523261 PMCID: PMC10962199 DOI: 10.1186/s12915-024-01865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Mitogen-activated protein kinases (MAPKs) preserve cell homeostasis by transducing physicochemical fluctuations of the environment into multiple adaptive responses. These responses involve transcriptional rewiring and the regulation of cell cycle transitions, among others. However, how stress conditions impinge mitotic progression is largely unknown. The mitotic checkpoint is a surveillance mechanism that inhibits mitotic exit in situations of defective chromosome capture, thus preventing the generation of aneuploidies. In this study, we investigate the role of MAPK Pmk1 in the regulation of mitotic exit upon stress. RESULTS We show that Schizosaccharomyces pombe cells lacking Pmk1, the MAP kinase effector of the cell integrity pathway (CIP), are hypersensitive to microtubule damage and defective in maintaining a metaphase arrest. Epistasis analysis suggests that Pmk1 is involved in maintaining spindle assembly checkpoint (SAC) signaling, and its deletion is additive to the lack of core SAC components such as Mad2 and Mad3. Strikingly, pmk1Δ cells show up to twofold increased levels of the anaphase-promoting complex (APC/C) activator Cdc20Slp1 during unperturbed growth. We demonstrate that Pmk1 physically interacts with Cdc20Slp1 N-terminus through a canonical MAPK docking site. Most important, the Cdc20Slp1 pool is rapidly degraded in stressed cells undergoing mitosis through a mechanism that requires MAPK activity, Mad3, and the proteasome, thus resulting in a delayed mitotic exit. CONCLUSIONS Our data reveal a novel function of MAPK in preventing mitotic exit and activation of cytokinesis in response to stress. The regulation of Cdc20Slp1 turnover by MAPK Pmk1 provides a key mechanism by which the timing of mitotic exit can be adjusted relative to environmental conditions.
Collapse
Affiliation(s)
| | - Terersa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, 30071, Spain
| | - Ignacio Flor-Parra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Gabriel Ruiz-Romero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, 30071, Spain.
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Seville, 41013, Spain.
| |
Collapse
|
5
|
Andreadis C, Li T, Liu JL. Ubiquitination regulates cytoophidium assembly in Schizosaccharomyces pombe. Exp Cell Res 2022; 420:113337. [PMID: 36087798 DOI: 10.1016/j.yexcr.2022.113337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/30/2022]
Abstract
CTP synthase (CTPS), a metabolic enzyme responsible for the de novo synthesis of CTP, can form filamentous structures termed cytoophidia, which are evolutionarily conserved from bacteria to humans. Here we used Schizosaccharomyces pombe to study the cytoophidium assembly regulation by ubiquitination. We tested the CTP synthase's capacity to be post-translationally modified by ubiquitin or be affected by the ubiquitination state of the cell and showed that ubiquitination is important for the maintenance of the CTPS filamentous structure in fission yeast. We have identified proteins which are in complex with CTPS, including specific ubiquitination regulators which significantly affect CTPS filamentation, and mapped probable ubiquitination targets on CTPS. Furthermore, we discovered that a cohort of deubiquitinating enzymes is important for the regulation of cytoophidium's filamentous morphology. Our study provides a framework for the analysis of the effects that ubiquitination and deubiquitination have on the formation of cytoophidia.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Tianhao Li
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
6
|
Bai S, Sun L, Wang X, Wang SM, Luo ZQ, Wang Y, Jin QW. Recovery from spindle checkpoint-mediated arrest requires a novel Dnt1-dependent APC/C activation mechanism. PLoS Genet 2022; 18:e1010397. [PMID: 36108046 PMCID: PMC9514617 DOI: 10.1371/journal.pgen.1010397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/27/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Abstract
The activated spindle assembly checkpoint (SAC) potently inhibits the anaphase-promoting complex/cyclosome (APC/C) to ensure accurate chromosome segregation at anaphase. Early studies have recognized that the SAC should be silenced within minutes to enable rapid APC/C activation and synchronous segregation of chromosomes once all kinetochores are properly attached, but the underlying silencers are still being elucidated. Here, we report that the timely silencing of SAC in fission yeast requires dnt1+, which causes severe thiabendazole (TBZ) sensitivity and increased rate of lagging chromosomes when deleted. The absence of Dnt1 results in prolonged inhibitory binding of mitotic checkpoint complex (MCC) to APC/C and attenuated protein levels of Slp1Cdc20, consequently slows the degradation of cyclin B and securin, and eventually delays anaphase entry in cells released from SAC activation. Interestingly, Dnt1 physically associates with APC/C upon SAC activation. We propose that this association may fend off excessive and prolonged MCC binding to APC/C and help to maintain Slp1Cdc20 stability. This may allow a subset of APC/C to retain activity, which ensures rapid anaphase onset and mitotic exit once SAC is inactivated. Therefore, our study uncovered a new player in dictating the timing and efficacy of APC/C activation, which is actively required for maintaining cell viability upon recovery from the inhibition of APC/C by spindle checkpoint.
Collapse
Affiliation(s)
- Shuang Bai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shuang-min Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhou-qing Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail: (ZL); (YW); (QJ)
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail: (ZL); (YW); (QJ)
| | - Quan-wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail: (ZL); (YW); (QJ)
| |
Collapse
|
7
|
Kops GJPL, Snel B, Tromer EC. Evolutionary Dynamics of the Spindle Assembly Checkpoint in Eukaryotes. Curr Biol 2021; 30:R589-R602. [PMID: 32428500 DOI: 10.1016/j.cub.2020.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tremendous diversity in eukaryotic life forms can ultimately be traced back to evolutionary modifications at the level of molecular networks. Deep understanding of these modifications will not only explain cellular diversity, but will also uncover different ways to execute similar processes and expose the evolutionary 'rules' that shape the molecular networks. Here, we review the evolutionary dynamics of the spindle assembly checkpoint (SAC), a signaling network that guards fidelity of chromosome segregation. We illustrate how the interpretation of divergent SAC systems in eukaryotic species is facilitated by combining detailed molecular knowledge of the SAC and extensive comparative genome analyses. Ultimately, expanding this to other core cellular systems and experimentally interrogating such systems in organisms from all major lineages may start outlining the routes to and eventual manifestation of the cellular diversity of eukaryotic life.
Collapse
Affiliation(s)
- Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Dashti S, Taheri M, Ghafouri-Fard S. An in-silico method leads to recognition of hub genes and crucial pathways in survival of patients with breast cancer. Sci Rep 2020; 10:18770. [PMID: 33128008 PMCID: PMC7603345 DOI: 10.1038/s41598-020-76024-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a highly heterogeneous disorder characterized by dysregulation of expression of numerous genes and cascades. In the current study, we aim to use a system biology strategy to identify key genes and signaling pathways in breast cancer. We have retrieved data of two microarray datasets (GSE65194 and GSE45827) from the NCBI Gene Expression Omnibus database. R package was used for identification of differentially expressed genes (DEGs), assessment of gene ontology and pathway enrichment evaluation. The DEGs were integrated to construct a protein-protein interaction network. Next, hub genes were recognized using the Cytoscape software and lncRNA-mRNA co-expression analysis was performed to evaluate the potential roles of lncRNAs. Finally, the clinical importance of the obtained genes was assessed using Kaplan-Meier survival analysis. In the present study, 887 DEGs including 730 upregulated and 157 downregulated DEGs were detected between breast cancer and normal samples. By combining the results of functional analysis, MCODE, CytoNCA and CytoHubba 2 hub genes including MAD2L1 and CCNB1 were selected. We also identified 12 lncRNAs with significant correlation with MAD2L1 and CCNB1 genes. According to The Kaplan-Meier plotter database MAD2L1, CCNA2, RAD51-AS1 and LINC01089 have the most prediction potential among all candidate hub genes. Our study offers a framework for recognition of mRNA-lncRNA network in breast cancer and detection of important pathways that could be used as therapeutic targets in this kind of cancer.
Collapse
Affiliation(s)
- Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
10
|
Leontiou I, London N, May KM, Ma Y, Grzesiak L, Medina-Pritchard B, Amin P, Jeyaprakash AA, Biggins S, Hardwick KG. The Bub1-TPR Domain Interacts Directly with Mad3 to Generate Robust Spindle Checkpoint Arrest. Curr Biol 2019; 29:2407-2414.e7. [PMID: 31257143 PMCID: PMC6657678 DOI: 10.1016/j.cub.2019.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/30/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
The spindle checkpoint monitors kinetochore-microtubule interactions and generates a “wait anaphase” delay when any defects are apparent [1, 2, 3]. This provides time for cells to correct chromosome attachment errors and ensure high-fidelity chromosome segregation. Checkpoint signals are generated at unattached chromosomes during mitosis. To activate the checkpoint, Mps1Mph1 kinase phosphorylates the kinetochore component KNL1Spc105/Spc7 on conserved MELT motifs to recruit Bub3-Bub1 complexes [4, 5, 6] via a direct Bub3 interaction with phospho-MELT motifs [7, 8]. Mps1Mph1 then phosphorylates Bub1, which strengthens its interaction with Mad1-Mad2 complexes to produce a signaling platform [9, 10]. The Bub1-Mad1 platform is thought to recruit Mad3, Cdc20, and Mad2 to produce the mitotic checkpoint complex (MCC), which is the diffusible wait anaphase signal [9, 11, 12]. The MCC binds and inhibits the mitotic E3 ubiquitin ligase, known as Cdc20-anaphase promoting complex/cyclosome (APC/C), and stabilizes securin and cyclin to delay anaphase onset [13, 14, 15, 16, 17]. Here we demonstrate, in both budding and fission yeast, that kinetochores and KNL1Spc105/Spc7 can be bypassed; simply inducing heterodimers of Mps1Mph1 kinase and Bub1 is sufficient to trigger metaphase arrest that is dependent on Mad1, Mad2, and Mad3. We use this to dissect the domains of Bub1 necessary for arrest, highlighting the need for Bub1-CD1, which binds Mad1 [9], and Bub1’s highly conserved N-terminal tetratricopeptide repeat (TPR) domain [18, 19]. We demonstrate that the Bub1 TPR domain is both necessary and sufficient to bind and recruit Mad3. We propose that this brings Mad3 into close proximity to Mad1-Mad2 and Mps1Mph1 kinase, enabling efficient generation of MCC complexes. Heterodimers of Mps1 and Bub1 generate robust spindle checkpoint arrest in yeasts This arrest is independent of kinetochores but requires Bub1-CD1 and the Bub1-TPR The Bub1-TPR is both necessary and sufficient for Mad3 interaction and recruitment Recombinant fission yeast Bub1-TPR and Mad3 form a stable complex
Collapse
Affiliation(s)
- Ioanna Leontiou
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Nitobe London
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Karen M May
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Yingrui Ma
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Lucile Grzesiak
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Bethan Medina-Pritchard
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Priya Amin
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - A Arockia Jeyaprakash
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kevin G Hardwick
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
11
|
Gross F, Bonaiuti P, Hauf S, Ciliberto A. Implications of alternative routes to APC/C inhibition by the mitotic checkpoint complex. PLoS Comput Biol 2018; 14:e1006449. [PMID: 30199529 PMCID: PMC6157902 DOI: 10.1371/journal.pcbi.1006449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/26/2018] [Accepted: 08/20/2018] [Indexed: 01/19/2023] Open
Abstract
The mitotic checkpoint (also called spindle assembly checkpoint) is a signaling pathway that ensures faithful chromosome segregation. Mitotic checkpoint proteins inhibit the anaphase-promoting complex (APC/C) and its activator Cdc20 to prevent precocious anaphase. Checkpoint signaling leads to a complex of APC/C, Cdc20, and checkpoint proteins, in which the APC/C is inactive. In principle, this final product of the mitotic checkpoint can be obtained via different pathways, whose relevance still needs to be fully ascertained experimentally. Here, we use mathematical models to compare the implications on checkpoint response of the possible pathways leading to APC/C inhibition. We identify a previously unrecognized funneling effect for Cdc20, which favors Cdc20 incorporation into the inhibitory complex and therefore promotes checkpoint activity. Furthermore, we find that the presence or absence of one specific assembly reaction determines whether the checkpoint remains functional at elevated levels of Cdc20, which can occur in cancer cells. Our results reveal the inhibitory logics behind checkpoint activity, predict checkpoint efficiency in perturbed situations, and could inform molecular strategies to treat malignancies that exhibit Cdc20 overexpression. Cell division is a fundamental event in the life of cells. It requires that a mother cell gives rise to two daughters which carry the same genetic material of their mother. Thus, during each cell cycle the genetic material needs to be replicated, compacted into chromosomes and redistributed to the two daughter cells. Any mistake in chromosome segregation would attribute the wrong number of chromosomes to the progeny. Hence, the process of chromosome segregation is closely watched by a surveillance mechanism known as the mitotic checkpoint. The molecular players of the checkpoint pathway are well known: we know both the input (ie, the species to be inhibited and their inhibitors), and the output (ie, the inhibited species). However, we do not exactly know the path that leads from the former to the latter. In this manuscript, we use a mathematical approach to explore the properties of plausible mitotic checkpoint networks. We find that seemingly similar circuits show very different behaviors for high levels of the protein targeted by the mitotic checkpoint, Cdc20. Interestingly, this protein is often overexpressed in cancer cells. For physiological levels of Cdc20, instead, all the models we have analyzed are capable to mount an efficient response. We find that this is due to a series of consecutive protein-protein binding reactions that funnel Cdc20 towards its inhibited state. We call this the funneling effect. Our analysis helps understanding the inhibitory logics underlying the checkpoint, and proposes new concepts that could be applied to other inhibitory pathways.
Collapse
Affiliation(s)
- Fridolin Gross
- Istituto Firc di Oncologia Molecolare, IFOM, Milano, Italy
| | - Paolo Bonaiuti
- Istituto Firc di Oncologia Molecolare, IFOM, Milano, Italy
| | - Silke Hauf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
- Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States of America
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States of America
- * E-mail: (SH); (AC)
| | - Andrea Ciliberto
- Istituto Firc di Oncologia Molecolare, IFOM, Milano, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
- * E-mail: (SH); (AC)
| |
Collapse
|
12
|
Ni Z, Wang X, Zhang T, Li L, Li J. Comprehensive analysis of differential expression profiles reveals potential biomarkers associated with the cell cycle and regulated by p53 in human small cell lung cancer. Exp Ther Med 2018; 15:3273-3282. [PMID: 29545845 PMCID: PMC5841087 DOI: 10.3892/etm.2018.5833] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Small cell lung cancer (SCLC) is the subtype of lung cancer with the highest degree of malignancy and the lowest degree of differentiation. The purpose of this study was to investigate the molecular mechanisms of SCLC using bioinformatics analysis, and to provide new ideas for the early diagnosis and targeted therapy of SCLC. Microarray data were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) in SCLC were compared with the normal lung samples and identified. Gene Ontology (GO) function and pathway analysis of DEGs was performed through the DAVID database. Furthermore, microarray data was analyzed by using the clustering analysis tool GoMiner. Protein-protein interaction (PPI) networks of DEGs were constructed using the STRING online database. Protein expression was determined from the Human Protein Atlas, and SCLC gene expression was determined using Oncomine. In total, 153 DEGs were obtained. Functional enrichment analysis suggested that the majority of DEGs were associated with the cell cycle. CCNB1, CCNB2, MAD2L1 and CDK1 were identified to contribute to the progression of SCLC through combined use of GO, Kyoto Encyclopedia of Genes and Genomes enrichment analysis and a PPI network. mRNA and protein expression were also validated in an integrative database. The present study indicated that the formation of SCLC may be associated with cell cycle regulation. In addition, the four crucial genes CCNB1, CCNB2, MAD2L1 and CDK1, which are downstream of p53, may have important roles in the occurrence and progression of SCLC, and thus may be promising potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Zhong Ni
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiting Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tianchen Zhang
- Institute of Reproduction and Development, Fudan University, Shanghai 200032, P.R. China.,China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, Shanghai Institute of Planned Parenthood Research (SIPPR), Shanghai 200032, P.R. China
| | - Linlin Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jianxue Li
- Department of Stomatology, Lanzhou General Hospital, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
13
|
Alfieri C, Zhang S, Barford D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol 2017; 7:170204. [PMID: 29167309 PMCID: PMC5717348 DOI: 10.1098/rsob.170204] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes.
Collapse
Affiliation(s)
- Claudio Alfieri
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Suyang Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
14
|
Different Functionality of Cdc20 Binding Sites within the Mitotic Checkpoint Complex. Curr Biol 2017; 27:1213-1220. [PMID: 28366743 DOI: 10.1016/j.cub.2017.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 11/21/2022]
Abstract
The mitotic checkpoint is a cellular safeguard that prevents chromosome missegregation in eukaryotic cells [1, 2]. Suboptimal functioning may foster chromosome missegregation in cancer cells [3]. Checkpoint signaling produces the "mitotic checkpoint complex" (MCC), which prevents anaphase by targeting Cdc20, the activator of the anaphase-promoting complex/cyclosome (APC/C). Recent biochemical and structural studies revealed that the human MCC binds two Cdc20 molecules, one (Cdc20M) through well-characterized, cooperative binding to Mad2 and Mad3/BubR1 (forming the "core MCC") and the other one (Cdc20A) through additional binding sequences in Mad3/BubR1 [4-6]. Here, we dissect the different functionality of these sites in vivo. We show in fission yeast that, at low Cdc20 concentrations, Cdc20M binding is sufficient for checkpoint activity and Cdc20A binding becomes dispensable. Cdc20A binding is mediated by the conserved Mad3 ABBA-KEN2-ABBA motif [7, 8], which we find additionally required for binding of the MCC to the APC/C and for MCC disassembly. Strikingly, deletion of the APC/C subunit Apc15 mimics mutations in this motif, revealing a shared function. This function of Apc15 may be masked in human cells by independent mediators of MCC-APC/C binding. Our data provide important in vivo support for the recent structure-based models and functionally dissect three elements of Cdc20 inhibition: (1) sequestration of Cdc20 in the core MCC, sufficient at low Cdc20 concentrations; (2) inhibition of a second Cdc20 through the Mad3 C terminus, independent of Mad2 binding to this Cdc20 molecule; and (3) occupancy of the APC/C with full MCC, where Mad3 and Apc15 are involved.
Collapse
|