1
|
Abstract
When vertebrates first conquered the land, they encountered a visual world that was radically distinct from that of their aquatic ancestors. Fish exploit the strong wavelength-dependent interactions of light with water by differentially feeding the signals from up to 5 spectral photoreceptor types into distinct behavioural programmes. However, above the water the same spectral rules do not apply, and this called for an update to visual circuit strategies. Early tetrapods soon evolved the double cone, a still poorly understood pair of new photoreceptors that brought the "ancestral terrestrial" complement from 5 to 7. Subsequent nonmammalian lineages differentially adapted this highly parallelised retinal input strategy for their diverse visual ecologies. By contrast, mammals shed most ancestral photoreceptors and converged on an input strategy that is exceptionally general. In eutherian mammals including in humans, parallelisation emerges gradually as the visual signal traverses the layers of the retina and into the brain.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, United Kingdom
| |
Collapse
|
2
|
Nilsson DE, Smolka J, Bok M. The vertical light-gradient and its potential impact on animal distribution and behavior. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.951328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The visual environment provides vital cues allowing animals to assess habitat quality, weather conditions or measure time of day. Together with other sensory cues and physiological conditions, the visual environment sets behavioral states that make the animal more prone to engage in some behaviors, and less in others. This master-control of behavior serves a fundamental and essential role in determining the distribution and behavior of all animals. Although it is obvious that visual information contains vital input for setting behavioral states, the precise nature of these visual cues remains unknown. Here we use a recently described method to quantify the distribution of light reaching animals’ eyes in different environments. The method records the vertical gradient (as a function of elevation angle) of intensity, spatial structure and spectral balance. Comparison of measurements from different types of environments, weather conditions, times of day, and seasons reveal that these aspects can be readily discriminated from one another. The vertical gradients of radiance, spatial structure (contrast) and color are thus reliable indicators that are likely to have a strong impact on animal behavior and spatial distribution.
Collapse
|
3
|
MacIver MA, Finlay BL. The neuroecology of the water-to-land transition and the evolution of the vertebrate brain. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200523. [PMID: 34957852 PMCID: PMC8710882 DOI: 10.1098/rstb.2020.0523] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The water-to-land transition in vertebrate evolution offers an unusual opportunity to consider computational affordances of a new ecology for the brain. All sensory modalities are changed, particularly a greatly enlarged visual sensorium owing to air versus water as a medium, and expanded by mobile eyes and neck. The multiplication of limbs, as evolved to exploit aspects of life on land, is a comparable computational challenge. As the total mass of living organisms on land is a hundredfold larger than the mass underwater, computational improvements promise great rewards. In water, the midbrain tectum coordinates approach/avoid decisions, contextualized by water flow and by the animal's body state and learning. On land, the relative motions of sensory surfaces and effectors must be resolved, adding on computational architectures from the dorsal pallium, such as the parietal cortex. For the large-brained and long-living denizens of land, making the right decision when the wrong one means death may be the basis of planning, which allows animals to learn from hypothetical experience before enactment. Integration of value-weighted, memorized panoramas in basal ganglia/frontal cortex circuitry, with allocentric cognitive maps of the hippocampus and its associated cortices becomes a cognitive habit-to-plan transition as substantial as the change in ecology. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Malcolm A. MacIver
- Center for Robotics and Biosystems, Northwestern University, Evanston, IL 60208, USA
| | - Barbara L. Finlay
- Department of Psychology, Behavioral and Evolutionary Neuroscience Group, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
4
|
Hunt LT, Daw ND, Kaanders P, MacIver MA, Mugan U, Procyk E, Redish AD, Russo E, Scholl J, Stachenfeld K, Wilson CRE, Kolling N. Formalizing planning and information search in naturalistic decision-making. Nat Neurosci 2021; 24:1051-1064. [PMID: 34155400 DOI: 10.1038/s41593-021-00866-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/23/2021] [Indexed: 02/05/2023]
Abstract
Decisions made by mammals and birds are often temporally extended. They require planning and sampling of decision-relevant information. Our understanding of such decision-making remains in its infancy compared with simpler, forced-choice paradigms. However, recent advances in algorithms supporting planning and information search provide a lens through which we can explain neural and behavioral data in these tasks. We review these advances to obtain a clearer understanding for why planning and curiosity originated in certain species but not others; how activity in the medial temporal lobe, prefrontal and cingulate cortices may support these behaviors; and how planning and information search may complement each other as means to improve future action selection.
Collapse
Affiliation(s)
- L T Hunt
- Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - N D Daw
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - P Kaanders
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - M A MacIver
- Center for Robotics and Biosystems, Department of Neurobiology, Department of Biomedical Engineering, Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - U Mugan
- Center for Robotics and Biosystems, Department of Neurobiology, Department of Biomedical Engineering, Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - E Procyk
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France
| | - A D Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - E Russo
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - J Scholl
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | | | - C R E Wilson
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France
| | - N Kolling
- Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| |
Collapse
|