1
|
Aprison EZ, Dzitoyeva S, Ruvinsky I. The roles of TGFβ and serotonin signaling in regulating proliferation of oocyte precursors and germline aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593208. [PMID: 38766220 PMCID: PMC11100717 DOI: 10.1101/2024.05.08.593208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The decline of oocyte quality in aging but otherwise relatively healthy individuals compels a search for underlying mechanisms. Building upon a finding that exposure to male pheromone ascr#10 improves oocyte quality in C. elegans, we uncovered a regulatory cascade that promotes proliferation of oocyte precursors in adults and regulates oocyte quality. We found that the male pheromone promotes proliferation of oocyte precursors by upregulating LAG-2, a ligand of the Notch-like pathway in the germline stem cell niche. LAG-2 is upregulated by a TGFβ-like ligand DAF-7 revealing similarity of regulatory mechanisms that promote germline proliferation in adults and larvae. A serotonin circuit that also regulates food search and consumption upregulates DAF-7 specifically in adults. The serotonin/DAF-7 signaling promotes germline expansion to compensate for oocyte expenditure which is increased by the male pheromone. Finally, we show that the earliest events in reproductive aging may be due to declining expression of LAG-2 and DAF-7. Our findings highlight neuronal signals that promote germline proliferation in response to the environment and argue that deteriorating oocyte quality may be due to reduced neuronal expression of key germline regulators.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Szczepańska A, Olek K, Kołodziejska K, Yu J, Ibrahim AT, Adamkiewicz L, Schroeder FC, Pokrzywa W, Turek M. Pheromone-based communication influences the production of somatic extracellular vesicles in C. elegans. Nat Commun 2024; 15:2715. [PMID: 38548742 PMCID: PMC10978837 DOI: 10.1038/s41467-024-47016-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Extracellular vesicles (EVs) are integral to numerous biological processes, yet it is unclear how environmental factors or interactions among individuals within a population affect EV-regulated systems. In Caenorhabditis elegans, the evolutionarily conserved large EVs, known as exophers, are part of a maternal somatic tissue resource management system. Consequently, the offspring of individuals exhibiting active exopher biogenesis (exophergenesis) develop faster. Our research focuses on unraveling the complex inter-tissue and social dynamics that govern exophergenesis. We found that ascr#10, the primary male pheromone, enhances exopher production in hermaphrodites, mediated by the G-protein-coupled receptor STR-173 in ASK sensory neurons. In contrast, pheromone produced by other hermaphrodites, ascr#3, diminishes exophergenesis within the population. This process is regulated via the neuropeptides FLP-8 and FLP-21, which originate from the URX and AQR/PQR/URX neurons, respectively. Our results reveal a regulatory network that controls the production of somatic EV by the nervous system in response to social signals.
Collapse
Affiliation(s)
- Agata Szczepańska
- Laboratory of Animal Molecular Physiology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Olek
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Klaudia Kołodziejska
- Laboratory of Animal Molecular Physiology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Abdulrahman Tudu Ibrahim
- Laboratory of Animal Molecular Physiology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Laura Adamkiewicz
- Laboratory of Animal Molecular Physiology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Michał Turek
- Laboratory of Animal Molecular Physiology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Luo J, Bainbridge C, Miller RM, Barrios A, Portman DS. C. elegans males optimize mate-preference decisions via sex-specific responses to multimodal sensory cues. Curr Biol 2024; 34:1309-1323.e4. [PMID: 38471505 PMCID: PMC10965367 DOI: 10.1016/j.cub.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
For sexually reproducing animals, selecting optimal mates is important for maximizing reproductive fitness. In the nematode C. elegans, populations reproduce largely by hermaphrodite self-fertilization, but the cross-fertilization of hermaphrodites by males also occurs. Males' ability to recognize hermaphrodites involves several sensory cues, but an integrated view of the ways males use these cues in their native context to assess characteristics of potential mates has been elusive. Here, we examine the mate-preference behavior of C. elegans males evoked by natively produced cues. We find that males use a combination of volatile sex pheromones (VSPs), ascaroside sex pheromones, surface-associated cues, and other signals to assess multiple features of potential mates. Specific aspects of mate preference are communicated by distinct signals: developmental stage and sex are signaled by ascaroside pheromones and surface cues, whereas the presence of a self-sperm-depleted hermaphrodite is likely signaled by VSPs. Furthermore, males prefer to interact with virgin over mated, and well-fed over food-deprived, hermaphrodites; these preferences are likely adaptive and are also mediated by ascarosides and other cues. Sex-typical mate-preference behavior depends on the sexual state of the nervous system, such that pan-neuronal genetic masculinization in hermaphrodites generates male-typical social behavior. We also identify an unexpected role for the sex-shared ASH sensory neurons in male attraction to ascaroside sex pheromones. Our findings lead to an integrated view in which the distinct physical properties of various mate-preference cues guide a flexible, stepwise behavioral program by which males assess multiple features of potential mates to optimize mate preference.
Collapse
Affiliation(s)
- Jintao Luo
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Chance Bainbridge
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Renee M Miller
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14620, USA
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Douglas S Portman
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
4
|
Mishra S, Dabaja M, Akhlaq A, Pereira B, Marbach K, Rovcanin M, Chandra R, Caballero A, Fernandes de Abreu D, Ch'ng Q, Alcedo J. Specific sensory neurons and insulin-like peptides modulate food type-dependent oogenesis and fertilization in Caenorhabditis elegans. eLife 2023; 12:e83224. [PMID: 37975568 PMCID: PMC10665013 DOI: 10.7554/elife.83224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
An animal's responses to environmental cues are critical for its reproductive program. Thus, a mechanism that allows the animal to sense and adjust to its environment should make for a more efficient reproductive physiology. Here, we demonstrate that in Caenorhabditis elegans specific sensory neurons influence onset of oogenesis through insulin signaling in response to food-derived cues. The chemosensory neurons ASJ modulate oogenesis onset through the insulin-like peptide (ILP) INS-6. In contrast, other sensory neurons, the olfactory neurons AWA, regulate food type-dependent differences in C. elegans fertilization rates, but not onset of oogenesis. AWA modulates fertilization rates at least partly in parallel to insulin receptor signaling, since the insulin receptor DAF-2 regulates fertilization independently of food type, which requires ILPs other than INS-6. Together our findings suggest that optimal reproduction requires the integration of diverse food-derived inputs through multiple neuronal signals acting on the C. elegans germline.
Collapse
Affiliation(s)
- Shashwat Mishra
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Mohamed Dabaja
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Asra Akhlaq
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Bianca Pereira
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Kelsey Marbach
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Mediha Rovcanin
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Rashmi Chandra
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Antonio Caballero
- Centre for Developmental Neurobiology, King’s College LondonLondonUnited Kingdom
| | | | - QueeLim Ch'ng
- Centre for Developmental Neurobiology, King’s College LondonLondonUnited Kingdom
| | - Joy Alcedo
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| |
Collapse
|
5
|
Peng JY, Liu X, Zeng XT, Hao Y, Zhang JH, Li Q, Tong XJ. Early pheromone perception remodels neurodevelopment and accelerates neurodegeneration in adult C. elegans. Cell Rep 2023; 42:112598. [PMID: 37289584 DOI: 10.1016/j.celrep.2023.112598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Age-associated neurodegenerative disorders such as Parkinson's and Alzheimer's diseases are mainly caused by protein aggregation. The etiologies of these neurodegenerative diseases share a chemical environment. However, how chemical cues modulate neurodegeneration remains unclear. Here, we found that in Caenorhabditis elegans, exposure to pheromones in the L1 stage accelerates neurodegeneration in adults. Perception of pheromones ascr#3 and ascr#10 is mediated by chemosensory neurons ASK and ASI. ascr#3 perceived by G protein-coupled receptor (GPCR) DAF-38 in ASK activates glutamatergic transmission into AIA interneurons. ascr#10 perceived by GPCR STR-2 in ASI activates the secretion of neuropeptide NLP-1, which binds to the NPR-11 receptor in AIA. Activation of both ASI and ASK is required and sufficient to remodel neurodevelopment via AIA, which triggers insulin-like signaling and inhibits autophagy in adult neurons non-cell-autonomously. Our work reveals how pheromone perception at the early developmental stage modulates neurodegeneration in adults and provides insights into how the external environment impacts neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing-Yi Peng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuqing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xian-Ting Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lingang Laboratory, Shanghai 200031, China
| | - Qian Li
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia-Jing Tong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
6
|
Angeles-Albores D, Aprison EZ, Dzitoyeva S, Ruvinsky I. A Caenorhabditis elegans Male Pheromone Feminizes Germline Gene Expression in Hermaphrodites and Imposes Life-History Costs. Mol Biol Evol 2023; 40:msad119. [PMID: 37210586 PMCID: PMC10244002 DOI: 10.1093/molbev/msad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/14/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Sex pheromones not only improve the reproductive success of the recipients, but also impose costs, such as a reduced life span. The underlying mechanisms largely remain to be elucidated. Here, we show that even a brief exposure to physiological amounts of the dominant Caenorhabditis elegans male pheromone, ascr#10, alters the expression of thousands of genes in hermaphrodites. The most dramatic effect on the transcriptome is the upregulation of genes expressed during oogenesis and the downregulation of genes associated with male gametogenesis. This result reveals a way in which social signals help to resolve the inherent conflict between spermatogenesis and oogenesis in a simultaneous hermaphrodite, presumably to optimally align reproductive function with the presence of potential mating partners. We also found that exposure to ascr#10 increased the risk of persistent intestinal infections in hermaphrodites due to pathological pharyngeal hypertrophy. Thus, our study reveals ways in which the male pheromone can not only have beneficial effects on the recipients' reproduction, but also cause harmful consequences that reduce life span.
Collapse
Affiliation(s)
| | - Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
7
|
Luo J, Barrios A, Portman DS. C. elegans males optimize mate-choice decisions via sex-specific responses to multimodal sensory cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.08.536021. [PMID: 37066192 PMCID: PMC10104232 DOI: 10.1101/2023.04.08.536021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
For sexually reproducing animals, selecting optimal mates is essential for maximizing reproductive fitness. Because the nematode C. elegans reproduces mostly by self-fertilization, little is known about its mate-choice behaviors. While several sensory cues have been implicated in males' ability to recognize hermaphrodites, achieving an integrated understanding of the ways males use these cues to assess relevant characteristics of potential mates has proven challenging. Here, we use a choice-based social-interaction assay to explore the ability of C. elegans males to make and optimize mate choices. We find that males use a combination of volatile sex pheromones (VSPs), ascaroside pheromones, surface-bound chemical cues, and other signals to robustly assess a variety of features of potential mates. Specific aspects of mate choice are communicated by distinct signals: the presence of a sperm-depleted, receptive hermaphrodite is likely signaled by VSPs, while developmental stage and sex are redundantly specified by ascaroside pheromones and surface-associated cues. Ascarosides also signal nutritional information, allowing males to choose well-fed over starved mates, while both ascarosides and surface-associated cues cause males to prefer virgin over previously mated hermaphrodites. The male-specificity of these behavioral responses is determined by both male-specific neurons and the male state of sex-shared circuits, and we reveal an unexpected role for the sex-shared ASH sensory neurons in male attraction to endogenously produced hermaphrodite ascarosides. Together, our findings lead to an integrated view of the signaling and behavioral mechanisms by which males use diverse sensory cues to assess multiple features of potential mates and optimize mate choice.
Collapse
Affiliation(s)
- Jintao Luo
- School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Douglas S. Portman
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642
| |
Collapse
|
8
|
Reilly DK, Schwarz EM, Muirhead CS, Robidoux AN, Narayan A, Doma MK, Sternberg PW, Srinivasan J. Transcriptomic profiling of sex-specific olfactory neurons reveals subset-specific receptor expression in Caenorhabditis elegans. Genetics 2023; 223:iyad026. [PMID: 36801937 PMCID: PMC10319972 DOI: 10.1093/genetics/iyad026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/20/2023] Open
Abstract
The nematode Caenorhabditis elegans utilizes chemosensation to navigate an ever-changing environment for its survival. A class of secreted small-molecule pheromones, termed ascarosides, play an important role in olfactory perception by affecting biological functions ranging from development to behavior. The ascaroside #8 (ascr#8) mediates sex-specific behaviors, driving avoidance in hermaphrodites and attraction in males. Males sense ascr#8 via the ciliated male-specific cephalic sensory (CEM) neurons, which exhibit radial symmetry along dorsal-ventral and left-right axes. Calcium imaging studies suggest a complex neural coding mechanism that translates stochastic physiological responses in these neurons to reliable behavioral outputs. To test the hypothesis that neurophysiological complexity arises from differential expression of genes, we performed cell-specific transcriptomic profiling; this revealed between 18 and 62 genes with at least twofold higher expression in a specific CEM neuron subtype vs both other CEM neurons and adult males. These included two G protein-coupled receptor (GPCR) genes, srw-97 and dmsr-12, that were specifically expressed in nonoverlapping subsets of CEM neurons and whose expression was confirmed by GFP reporter analysis. Single CRISPR-Cas9 knockouts of either srw-97 or dmsr-12 resulted in partial defects, while a double knockout of both srw-97 and dmsr-12 completely abolished the attractive response to ascr#8. Together, our results suggest that the evolutionarily distinct GPCRs SRW-97 and DMSR-12 act nonredundantly in discrete olfactory neurons to facilitate male-specific sensation of ascr#8.
Collapse
Affiliation(s)
- Douglas K Reilly
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Caroline S Muirhead
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Annalise N Robidoux
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Anusha Narayan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Meenakshi K Doma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| |
Collapse
|
9
|
Yang B, Wang J, Zheng X, Wang X. Nematode Pheromones: Structures and Functions. Molecules 2023; 28:2409. [PMID: 36903652 PMCID: PMC10005090 DOI: 10.3390/molecules28052409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Pheromones are chemical signals secreted by one individual that can affect the behaviors of other individuals within the same species. Ascaroside is an evolutionarily conserved family of nematode pheromones that play an integral role in the development, lifespan, propagation, and stress response of nematodes. Their general structure comprises the dideoxysugar ascarylose and fatty-acid-like side chains. Ascarosides can vary structurally and functionally according to the lengths of their side chains and how they are derivatized with different moieties. In this review, we mainly describe the chemical structures of ascarosides and their different effects on the development, mating, and aggregation of nematodes, as well as how they are synthesized and regulated. In addition, we discuss their influences on other species in various aspects. This review provides a reference for the functions and structures of ascarosides and enables their better application.
Collapse
Affiliation(s)
| | | | | | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
10
|
Lin A, Qin S, Casademunt H, Wu M, Hung W, Cain G, Tan NZ, Valenzuela R, Lesanpezeshki L, Venkatachalam V, Pehlevan C, Zhen M, Samuel AD. Functional imaging and quantification of multineuronal olfactory responses in C. elegans. SCIENCE ADVANCES 2023; 9:eade1249. [PMID: 36857454 PMCID: PMC9977185 DOI: 10.1126/sciadv.ade1249] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/01/2023] [Indexed: 05/21/2023]
Abstract
Many animals perceive odorant molecules by collecting information from ensembles of olfactory neurons, where each neuron uses receptors that are tuned to recognize certain odorant molecules with different binding affinity. Olfactory systems are able, in principle, to detect and discriminate diverse odorants using combinatorial coding strategies. We have combined microfluidics and multineuronal imaging to study the ensemble-level olfactory representations at the sensory periphery of the nematode Caenorhabditis elegans. The collective activity of C. elegans chemosensory neurons reveals high-dimensional representations of olfactory information across a broad space of odorant molecules. We reveal diverse tuning properties and dose-response curves across chemosensory neurons and across odorants. We describe the unique contribution of each sensory neuron to an ensemble-level code for volatile odorants. We show that a natural stimuli, a set of nematode pheromones, are also encoded by the sensory ensemble. The integrated activity of the C. elegans chemosensory neurons contains sufficient information to robustly encode the intensity and identity of diverse chemical stimuli.
Collapse
Affiliation(s)
- Albert Lin
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Shanshan Qin
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Helena Casademunt
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Min Wu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Gregory Cain
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Nicolas Z. Tan
- Department of Physics, Northeastern University, Boston, MA, USA
| | | | - Leila Lesanpezeshki
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Cengiz Pehlevan
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Aravinthan D.T. Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
11
|
Angeles-Albores D, Aprison EZ, Dzitoyeva S, Ruvinsky I. A C. elegans male pheromone feminizes germline gene expression in hermaphrodites and imposes life-history costs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528976. [PMID: 36824927 PMCID: PMC9949107 DOI: 10.1101/2023.02.17.528976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Sex pheromones improve reproductive success, but also impose costs. Here we show that even brief exposure to physiological amounts of the dominant C. elegans male pheromone, ascr#10, alters the expression of thousands of genes in hermaphrodites. The most dramatic effect on the transcriptome was the upregulation of genes expressed during oogenesis and downregulation of genes associated with male gametogenesis. Among the detrimental effects of ascr#10 on hermaphrodites is the increased risk of persistent infections caused by pathological pharyngeal hypertrophy. Our results reveal a way in which social signals help to resolve the inherent conflict between spermatogenesis and oogenesis in a simultaneous hermaphrodite, presumably to optimally align reproductive function to the presence of potential mating partners. They also show that the beneficial effects of the pheromone are accompanied by harmful consequences that reduce lifespan.
Collapse
Affiliation(s)
- David Angeles-Albores
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Current address: Altos Labs, Bay Area Institute of Science, Redwood Shores, CA 94065, USA
| | - Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
12
|
Burkhardt RN, Artyukhin AB, Aprison EZ, Curtis BJ, Fox BW, Ludewig AH, Palomino DF, Luo J, Chaturbedi A, Panda O, Wrobel CJJ, Baumann V, Portman DS, Lee SS, Ruvinsky I, Schroeder FC. Sex-specificity of the C. elegans metabolome. Nat Commun 2023; 14:320. [PMID: 36658169 PMCID: PMC9852247 DOI: 10.1038/s41467-023-36040-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Recent studies of animal metabolism have revealed large numbers of novel metabolites that are involved in all aspects of organismal biology, but it is unclear to what extent metabolomes differ between sexes. Here, using untargeted comparative metabolomics for the analysis of wildtype animals and sex determination mutants, we show that C. elegans hermaphrodites and males exhibit pervasive metabolomic differences. Several hundred small molecules are produced exclusively or in much larger amounts in one sex, including a host of previously unreported metabolites that incorporate building blocks from nucleoside, carbohydrate, lipid, and amino acid metabolism. A subset of male-enriched metabolites is specifically associated with the presence of a male germline, whereas enrichment of other compounds requires a male soma. Further, we show that one of the male germline-dependent metabolites, an unusual dipeptide incorporating N,N-dimethyltryptophan, increases food consumption, reduces lifespan, and accelerates the last stage of larval development in hermaphrodites. Our results serve as a foundation for mechanistic studies of how the genetic sex of soma and germline shape the C. elegans metabolome and provide a blueprint for the discovery of sex-dependent metabolites in other animals.
Collapse
Affiliation(s)
- Russell N Burkhardt
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander B Artyukhin
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Andreas H Ludewig
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jintao Luo
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, 14642, USA
- School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Oishika Panda
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Victor Baumann
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, 14642, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Wu T, Ge M, Wu M, Duan F, Liang J, Chen M, Gracida X, Liu H, Yang W, Dar AR, Li C, Butcher RA, Saltzman AL, Zhang Y. Pathogenic bacteria modulate pheromone response to promote mating. Nature 2023; 613:324-331. [PMID: 36599989 PMCID: PMC10732163 DOI: 10.1038/s41586-022-05561-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 11/11/2022] [Indexed: 01/05/2023]
Abstract
Pathogens generate ubiquitous selective pressures and host-pathogen interactions alter social behaviours in many animals1-4. However, very little is known about the neuronal mechanisms underlying pathogen-induced changes in social behaviour. Here we show that in adult Caenorhabditis elegans hermaphrodites, exposure to a bacterial pathogen (Pseudomonas aeruginosa) modulates sensory responses to pheromones by inducing the expression of the chemoreceptor STR-44 to promote mating. Under standard conditions, C. elegans hermaphrodites avoid a mixture of ascaroside pheromones to facilitate dispersal5-13. We find that exposure to the pathogenic Pseudomonas bacteria enables pheromone responses in AWA sensory neurons, which mediate attractive chemotaxis, to suppress the avoidance. Pathogen exposure induces str-44 expression in AWA neurons, a process regulated by a transcription factor zip-5 that also displays a pathogen-induced increase in expression in AWA. STR-44 acts as a pheromone receptor and its function in AWA neurons is required for pathogen-induced AWA pheromone response and suppression of pheromone avoidance. Furthermore, we show that C. elegans hermaphrodites, which reproduce mainly through self-fertilization, increase the rate of mating with males after pathogen exposure and that this increase requires str-44 in AWA neurons. Thus, our results uncover a causal mechanism for pathogen-induced social behaviour plasticity, which can promote genetic diversity and facilitate adaptation of the host animals.
Collapse
Affiliation(s)
- Taihong Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Minghai Ge
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Min Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Fengyun Duan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jingting Liang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Maoting Chen
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Xicotencatl Gracida
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - He Liu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Wenxing Yang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Abdul Rouf Dar
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Chengyin Li
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Arneet L Saltzman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
14
|
Aprison EZ, Dzitoyeva S, Ruvinsky I. The serotonin circuit that coordinates germline proliferation and egg laying with other reproductive functions in Caenorhabditis elegans. Proc Biol Sci 2022; 289:20220913. [PMID: 36448283 PMCID: PMC9709507 DOI: 10.1098/rspb.2022.0913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Behaviour and physiology are altered in reproducing animals, but neuronal circuits that regulate these changes remain largely unknown. Insights into mechanisms that regulate and possibly coordinate reproduction-related traits could be gleaned from the study of sex pheromones that can improve the reproductive success of potential mating partners. In Caenorhabditis elegans, the prominent male pheromone, ascr#10, modifies reproductive behaviour and several aspects of reproductive physiology in hermaphrodite recipients, including improving oocyte quality. Here we show that a circuit that contains serotonin-producing and serotonin-uptaking neurons plays a key role in mediating effects of ascr#10 on germline development and egg laying behaviour. We also demonstrate that increased serotonin signalling promotes proliferation of germline progenitors in adult hermaphrodites. Our results establish a role for serotonin in maintaining germline quality and highlight a simple neuronal circuit that acts as a linchpin that couples food intake, mating behaviour, reproductive output, and germline renewal and provisioning.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
15
|
Aprison EZ, Dzitoyeva S, Angeles-Albores D, Ruvinsky I. A male pheromone that improves the quality of the oogenic germline. Proc Natl Acad Sci U S A 2022; 119:e2015576119. [PMID: 35576466 PMCID: PMC9173808 DOI: 10.1073/pnas.2015576119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Pheromones exchanged by conspecifics are a major class of chemical signals that can alter behavior, physiology, and development. In particular, males and females communicate with potential mating partners via sex pheromones to promote reproductive success. Physiological and developmental mechanisms by which pheromones facilitate progeny production remain largely enigmatic. Here, we describe how a Caenorhabditis elegans male pheromone, ascr#10, improves the oogenic germline. Before most signs of aging become evident, C. elegans hermaphrodites start producing lower-quality gametes characterized by abnormal morphology, increased rates of chromosomal nondisjunction, and higher penetrance of deleterious alleles. We show that exposure to the male pheromone substantially ameliorates these defects and reduces embryonic lethality. ascr#10 stimulates proliferation of germline precursor cells in adult hermaphrodites. Coupled to the greater precursor supply is increased physiological germline cell death, which is required to improve oocyte quality in older mothers. The hermaphrodite germline is sensitive to the pheromone only during a time window, comparable in duration to a larval stage, in early adulthood. During this period, prereproductive adults assess the suitability of the environment for reproduction. Our results identify developmental events that occur in the oogenic germline in response to a male pheromone. They also suggest that the opposite effects of the pheromone on gamete quality and maternal longevity arise from competition over resource allocation between soma and the germline.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | | | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
16
|
Aprison EZ, Ruvinsky I. The roles of several sensory neurons and the feedback from egg laying in regulating the germline response to a sex pheromone in C. elegans hermaphrodites. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000523. [PMID: 35128345 PMCID: PMC8811620 DOI: 10.17912/micropub.biology.000523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 11/06/2022]
Abstract
Animals broadcast small molecule pheromones that can alter behavior and physiology in conspecifics. Neuronal circuits that regulate these processes remain largely unknown. In C. elegans, male-enriched ascaroside sex pheromone ascr#10, in addition to behavioral effects, expands the population of germline precursor cells in hermaphrodites. Previously, we identified several sensory neurons required for this effect. We also found that feedback from egg laying acts via serotonergic signaling to license the pheromone response in reproducing adults. Here, using newly available reagents, we confirm and extend several of our previous conclusions: a) the ADL neurons are essential for the ascr#10 response, b) phasmid neurons (PHA and PHB) are unlikely to be involved in the ascr#10 response, c) the mod-1 receptor is the main conduit of the serotonergic feedback from egg laying, and d) serotonin remains the only currently known signal of this feedback. Our findings better define the neuronal circuits that mediate the germline response to the major male pheromone.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University
| |
Collapse
|
17
|
Aprison EZ, Ruvinsky I. ODR-1 acts in AWB neurons to determine the sexual identity of C. elegans pheromone blends. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000507. [PMID: 35047764 PMCID: PMC8758999 DOI: 10.17912/micropub.biology.000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/03/2022]
Abstract
Valence of animal pheromone blends can vary due to differences in relative abundance of individual components. For example, in C. elegans, whether a pheromone blend is perceived as "male" or "hermaphrodite" is determined by the ratio of concentrations of ascr#10 and ascr#3. The neuronal mechanisms that evaluate this ratio are not currently understood. We present data that suggest that the function of guanylyl cyclase ODR-1 in AWB neurons is required for the effect of ascr#3 that counteracts the activity of ascr#10. This finding defines a new module in the neuronal mechanism that determines the sexual identity of C. elegans pheromone.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
18
|
Derby CD, McClintock TS, Caprio J. Understanding responses to chemical mixtures: looking forward from the past. Chem Senses 2022; 47:bjac002. [PMID: 35226060 PMCID: PMC8883806 DOI: 10.1093/chemse/bjac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our goal in this article is to provide a perspective on how to understand the nature of responses to chemical mixtures. In studying responses to mixtures, researchers often identify "mixture interactions"-responses to mixtures that are not accurately predicted from the responses to the mixture's individual components. Critical in these studies is how to predict responses to mixtures and thus to identify a mixture interaction. We explore this issue with a focus on olfaction and on the first level of neural processing-olfactory sensory neurons-although we use examples from taste systems as well and we consider responses beyond sensory neurons, including behavior and psychophysics. We provide a broadly comparative perspective that includes examples from vertebrates and invertebrates, from genetic and nongenetic animal models, and from literature old and new. In the end, we attempt to recommend how to approach these problems, including possible future research directions.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
19
|
Reilly DK, McGlame EJ, Vandewyer E, Robidoux AN, Muirhead CS, Northcott HT, Joyce W, Alkema MJ, Gegear RJ, Beets I, Srinivasan J. Distinct neuropeptide-receptor modules regulate a sex-specific behavioral response to a pheromone. Commun Biol 2021; 4:1018. [PMID: 34465863 PMCID: PMC8408276 DOI: 10.1038/s42003-021-02547-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Dioecious species are a hallmark of the animal kingdom, with opposing sexes responding differently to identical sensory cues. Here, we study the response of C. elegans to the small-molecule pheromone, ascr#8, which elicits opposing behavioral valences in each sex. We identify a novel neuropeptide-neuropeptide receptor (NP/NPR) module that is active in males, but not in hermaphrodites. Using a novel paradigm of neuropeptide rescue that we established, we leverage bacterial expression of individual peptides to rescue the sex-specific response to ascr#8. Concurrent biochemical studies confirmed individual FLP-3 peptides differentially activate two divergent receptors, NPR-10 and FRPR-16. Interestingly, the two of the peptides that rescued behavior in our feeding paradigm are related through a conserved threonine, suggesting that a specific NP/NPR combination sets a male state, driving the correct behavioral valence of the ascr#8 response. Receptor expression within pre-motor neurons reveals novel coordination of male-specific and core locomotory circuitries.
Collapse
Affiliation(s)
- Douglas K. Reilly
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,grid.429997.80000 0004 1936 7531Present Address: Tufts University, Medford, MA USA
| | - Emily J. McGlame
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,Present Address: AbbVie Foundational Neuroscience Center, Cambridge, MA USA
| | - Elke Vandewyer
- grid.5596.f0000 0001 0668 7884Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Annalise N. Robidoux
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| | - Caroline S. Muirhead
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| | - Haylea T. Northcott
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,grid.423532.10000 0004 0516 8515Present Address: Optum, Hartford, CT USA
| | - William Joyce
- grid.168645.80000 0001 0742 0364Neurobiology Department, University of Massachusetts Medical School, Worcester, MA USA
| | - Mark J. Alkema
- grid.168645.80000 0001 0742 0364Neurobiology Department, University of Massachusetts Medical School, Worcester, MA USA
| | - Robert J. Gegear
- grid.266686.a0000000102217463Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA USA
| | - Isabel Beets
- grid.5596.f0000 0001 0668 7884Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jagan Srinivasan
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| |
Collapse
|
20
|
Yu Y, Zhang YK, Manohar M, Artyukhin AB, Kumari A, Tenjo-Castano FJ, Nguyen H, Routray P, Choe A, Klessig DF, Schroeder FC. Nematode Signaling Molecules Are Extensively Metabolized by Animals, Plants, and Microorganisms. ACS Chem Biol 2021; 16:1050-1058. [PMID: 34019369 DOI: 10.1021/acschembio.1c00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many bacterivorous and parasitic nematodes secrete signaling molecules called ascarosides that play a central role regulating their behavior and development. Combining stable-isotope labeling and mass spectrometry-based comparative metabolomics, here we show that ascarosides are taken up from the environment and metabolized by a wide range of phyla, including plants, fungi, bacteria, and mammals, as well as nematodes. In most tested eukaryotes and some bacteria, ascarosides are metabolized into derivatives with shortened fatty acid side chains, analogous to ascaroside biosynthesis in nematodes. In plants and C. elegans, labeled ascarosides were additionally integrated into larger, modular metabolites, and use of different ascaroside stereoisomers revealed the stereospecificity of their biosynthesis. The finding that nematodes extensively metabolize ascarosides taken up from the environment suggests that pheromone editing may play a role in conspecific and interspecific interactions. Moreover, our results indicate that plants, animals, and microorganisms may interact with associated nematodes via manipulation of ascaroside signaling.
Collapse
Affiliation(s)
- Yan Yu
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ying K. Zhang
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Alexander B. Artyukhin
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, New York 13210, United States
| | - Anshu Kumari
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
| | | | - Hung Nguyen
- Holoclara, Inc., Pasadena, California 91101, United States
| | - Pratyush Routray
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Andrea Choe
- Holoclara, Inc., Pasadena, California 91101, United States
| | - Daniel F. Klessig
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
21
|
Qian KY, Zeng WX, Hao Y, Zeng XT, Liu H, Li L, Chen L, Tian FM, Chang C, Hall Q, Song CX, Gao S, Hu Z, Kaplan JM, Li Q, Tong XJ. Male pheromones modulate synaptic transmission at the C. elegans neuromuscular junction in a sexually dimorphic manner. eLife 2021; 10:e67170. [PMID: 33787493 PMCID: PMC8051947 DOI: 10.7554/elife.67170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
The development of functional synapses in the nervous system is important for animal physiology and behaviors, and its disturbance has been linked with many neurodevelopmental disorders. The synaptic transmission efficacy can be modulated by the environment to accommodate external changes, which is crucial for animal reproduction and survival. However, the underlying plasticity of synaptic transmission remains poorly understood. Here we show that in Caenorhabditis elegans, the male environment increases the hermaphrodite cholinergic transmission at the neuromuscular junction (NMJ), which alters hermaphrodites' locomotion velocity and mating efficiency. We identify that the male-specific pheromones mediate this synaptic transmission modulation effect in a developmental stage-dependent manner. Dissection of the sensory circuits reveals that the AWB chemosensory neurons sense those male pheromones and further transduce the information to NMJ using cGMP signaling. Exposure of hermaphrodites to the male pheromones specifically increases the accumulation of presynaptic CaV2 calcium channels and clustering of postsynaptic acetylcholine receptors at cholinergic synapses of NMJ, which potentiates cholinergic synaptic transmission. Thus, our study demonstrates a circuit mechanism for synaptic modulation and behavioral flexibility by sexual dimorphic pheromones.
Collapse
Affiliation(s)
- Kang-Ying Qian
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Wan-Xin Zeng
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yue Hao
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xian-Ting Zeng
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of QueenslandBrisbaneAustralia
| | - Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of QueenslandBrisbaneAustralia
| | - Lili Chen
- College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Fu-min Tian
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Cindy Chang
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Qi Hall
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Chun-Xue Song
- Center for Brain Science, Shanghai Children's Medical CenterShanghaiChina
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of QueenslandBrisbaneAustralia
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical CenterShanghaiChina
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Research Center for Brain Science and Brain-Inspired IntelligenceShanghaiChina
| | - Xia-Jing Tong
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| |
Collapse
|
22
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
23
|
Le HH, Wrobel CJ, Cohen SM, Yu J, Park H, Helf MJ, Curtis BJ, Kruempel JC, Rodrigues PR, Hu PJ, Sternberg PW, Schroeder FC. Modular metabolite assembly in Caenorhabditis elegans depends on carboxylesterases and formation of lysosome-related organelles. eLife 2020; 9:61886. [PMID: 33063667 PMCID: PMC7641594 DOI: 10.7554/elife.61886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Signaling molecules derived from attachment of diverse metabolic building blocks to ascarosides play a central role in the life history of C. elegans and other nematodes; however, many aspects of their biogenesis remain unclear. Using comparative metabolomics, we show that a pathway mediating formation of intestinal lysosome-related organelles (LROs) is required for biosynthesis of most modular ascarosides as well as previously undescribed modular glucosides. Similar to modular ascarosides, the modular glucosides are derived from highly selective assembly of moieties from nucleoside, amino acid, neurotransmitter, and lipid metabolism, suggesting that modular glucosides, like the ascarosides, may serve signaling functions. We further show that carboxylesterases that localize to intestinal organelles are required for the assembly of both modular ascarosides and glucosides via ester and amide linkages. Further exploration of LRO function and carboxylesterase homologs in C. elegans and other animals may reveal additional new compound families and signaling paradigms.
Collapse
Affiliation(s)
- Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Chester Jj Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Sarah M Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Maximilian J Helf
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Joseph C Kruempel
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
| | - Pedro Reis Rodrigues
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| |
Collapse
|
24
|
Abstract
The last few decades have seen the structural and functional elucidation of small-molecule chemical signals called ascarosides in C. elegans. Ascarosides mediate several biological processes in worms, ranging from development, to behavior. These signals are modular in their design architecture, with their building blocks derived from metabolic pathways. Behavioral responses are not only concentration dependent, but also are influenced by the current physiological state of the animal. Cellular and circuit-level analyses suggest that these signals constitute a complex communication system, employing both synergistic molecular elements and sex-specific neuronal circuits governing the response. In this review, we discuss research from multiple laboratories, including our own, that detail how these chemical signals govern several different social behaviors in C. elegans. We propose that the ascaroside repertoire represents a link between diverse metabolic and neurobiological life-history traits and governs the survival of C. elegans in its natural environment.
Collapse
Affiliation(s)
- Caroline S Muirhead
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| |
Collapse
|
25
|
Gordon K. Recent Advances in the Genetic, Anatomical, and Environmental Regulation of the C. elegans Germ Line Progenitor Zone. J Dev Biol 2020; 8:E14. [PMID: 32707774 PMCID: PMC7559772 DOI: 10.3390/jdb8030014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
The C. elegans germ line and its gonadal support cells are well studied from a developmental genetics standpoint and have revealed many foundational principles of stem cell niche biology. Among these are the observations that a niche-like cell supports a self-renewing stem cell population with multipotential, differentiating daughter cells. While genetic features that distinguish stem-like cells from their differentiating progeny have been defined, the mechanisms that structure these populations in the germ line have yet to be explained. The spatial restriction of Notch activation has emerged as an important genetic principle acting in the distal germ line. Synthesizing recent findings, I present a model in which the germ stem cell population of the C. elegans adult hermaphrodite can be recognized as two distinct anatomical and genetic populations. This review describes the recent progress that has been made in characterizing the undifferentiated germ cells and gonad anatomy, and presents open questions in the field and new directions for research to pursue.
Collapse
Affiliation(s)
- Kacy Gordon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
26
|
Abstract
How does physiological state affect the reproductive behavior of an organism? Two new studies in Caenorhabditis elegans implicate an ancient serotonergic neuronal circuit in the link between these two outputs - reproductive behavior and physiology.
Collapse
Affiliation(s)
- Douglas K Reilly
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA; Program of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
27
|
Aprison EZ, Ruvinsky I. Dynamic Regulation of Adult-Specific Functions of the Nervous System by Signaling from the Reproductive System. Curr Biol 2019; 29:4116-4123.e3. [PMID: 31708396 PMCID: PMC6907730 DOI: 10.1016/j.cub.2019.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
Unlike juveniles, adult animals engage in suites of behaviors related to the search for and selection of potential mates and mating, including appropriate responses to sex pheromones. As in other species [1], male sex pheromones modulate several behaviors and physiological processes in C. elegans hermaphrodites [2-5]. In particular, one of these small-molecule signals, an ascaroside ascr#10, causes reduced exploration, more avid mating, and improved reproductive performance (see the accompanying paper by Aprison and Ruvinsky in this issue of Current Biology) [6]. Here, we investigated the mechanism that restricts pheromone response to adult hermaphrodites. Unexpectedly, we found that attainment of developmental adulthood was not alone sufficient for the behavioral response to the pheromone. To modify exploratory behavior in response to male pheromone, adult hermaphrodites also require functional germline and egg-laying apparatus. We show that this dependence of behavior on the reproductive system is due to feedback from the vulva muscles that reports ongoing reproduction to the nervous system. Our results reveal an activity-dependent conduit by which the reproductive system continuously licenses adult behaviors, including appropriate responses to the pheromones of the opposite sex. More broadly, our results suggest that signals from peripheral organs may serve as an important component of assuring age-appropriate functions of the nervous system.
Collapse
Affiliation(s)
- Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
28
|
Aprison EZ, Ruvinsky I. Coordinated Behavioral and Physiological Responses to a Social Signal Are Regulated by a Shared Neuronal Circuit. Curr Biol 2019; 29:4108-4115.e4. [PMID: 31708394 DOI: 10.1016/j.cub.2019.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/30/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
Successful reproduction in animals requires orchestration of behavior and physiological processes. Pheromones can induce both "releaser" (behavioral) and "priming" (physiological) effects [1] in vertebrates [2, 3] and invertebrates [4, 5]. Therefore, understanding the mechanisms underlying pheromone responses could reveal how reproduction-related behaviors and physiology are coordinated. Here, we describe a neuronal circuit that couples the reproductive system and behavior in adult Caenorhabditis elegans hermaphrodites. We found that the response of the oogenic germline to the male pheromone requires serotonin signal from NSM and HSN neurons that acts via the mod-1 receptor in AIY and RIF interneurons and is antagonized by pigment-dispersing factor (PDF). Surprisingly, the same neurons and pathways have been previously implicated in regulation of exploratory behavior in the absence of male-produced signals [6]. We demonstrate that male pheromone acts via this circuit in hermaphrodites to reduce exploration and decrease mating latency, thereby tuning multiple fitness-proximal processes. Our results demonstrate how a single circuit could coordinate behavioral and physiological responses to the environment, even those that unfold on different timescales. Our findings suggest the existence of a centralized regulatory mechanism that balances organismal resources between reproductive investment and somatic maintenance.
Collapse
Affiliation(s)
- Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
29
|
An excreted small molecule promotes C. elegans reproductive development and aging. Nat Chem Biol 2019; 15:838-845. [PMID: 31320757 PMCID: PMC6650165 DOI: 10.1038/s41589-019-0321-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/31/2019] [Indexed: 01/16/2023]
Abstract
Excreted small-molecule signals can bias developmental trajectories and physiology in diverse animal species. However, the chemical identity of these signals remains largely obscure. Here we report identification of an unusual N-acylated glutamine derivative, nacq#1, that accelerates reproductive development and shortens lifespan in C. elegans. Produced predominantly by C. elegans males, nacq#1 hastens onset of sexual maturity in hermaphrodites by promoting exit from the larval dauer diapause and by accelerating late larval development. Even at picomolar concentrations, nacq#1 shortens hermaphrodite lifespan, suggesting a trade-off between reproductive investment and longevity. Acceleration of development by nacq#1 requires chemosensation and depends on three homologs of vertebrate steroid hormone receptors. Unlike ascaroside pheromones, which are restricted to nematodes, fatty acylated amino acid derivatives similar to nacq#1 have been reported from humans and invertebrates, suggesting that related compounds may serve signaling functions throughout Metazoa.
Collapse
|
30
|
Butcher RA. Natural products as chemical tools to dissect complex biology in C. elegans. Curr Opin Chem Biol 2019; 50:138-144. [PMID: 31102973 DOI: 10.1016/j.cbpa.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
The search for novel pheromones, hormones, and other types of natural products in the nematode Caenorhabditis elegans has accelerated over the last 10-15 years. Many of these natural products perturb fundamental processes such as developmental progression, metabolism, reproductive and somatic aging, and various behaviors and have thus become essential tools for probing these processes, which are difficult to study in higher organisms. Furthermore, given the similarity between C. elegans and parasitic nematodes, these natural products could potentially be used to manipulate the development and behavior of parasitic nematodes and target the infections caused by them.
Collapse
Affiliation(s)
- Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
31
|
McGrath PT, Ruvinsky I. A primer on pheromone signaling in Caenorhabditis elegans for systems biologists. ACTA ACUST UNITED AC 2018; 13:23-30. [PMID: 30984890 DOI: 10.1016/j.coisb.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Individuals communicate information about their age, sex, social status, and recent life history with other members of their species through the release of pheromones, chemical signals that elicit behavioral or physiological changes in the recipients. Pheromones provide a fascinating example of information exchange: animals have evolved intraspecific languages in the presence of eavesdroppers and cheaters. In this review, we discuss the recent work using the nematode C. elegans to decipher its chemical language through the analysis of ascaroside pheromones. Genetic dissection has started to identify the enzymes that produce pheromones and the neural circuits that process these signals. Ecological experiments have characterized the biotic environment of C. elegans and its relatives, including ecological relationships with a variety of species that sense or release similar blends of ascarosides. Systems biology approaches should be fruitful in understanding the organization and function of communication systems in C. elegans.
Collapse
Affiliation(s)
- Patrick T McGrath
- Department of Biological Sciences, Department of Physics; Georgia Institute of Technology, Atlanta, GA 30332.
| | - Ilya Ruvinsky
- Department of Molecular Biosciences; Northwestern University, Evanston, IL 60208.
| |
Collapse
|
32
|
Fagan KA, Luo J, Lagoy RC, Schroeder FC, Albrecht DR, Portman DS. A Single-Neuron Chemosensory Switch Determines the Valence of a Sexually Dimorphic Sensory Behavior. Curr Biol 2018; 28:902-914.e5. [PMID: 29526590 PMCID: PMC5862148 DOI: 10.1016/j.cub.2018.02.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 01/08/2023]
Abstract
Biological sex, a fundamental dimension of internal state, can modulate neural circuits to generate behavioral variation. Understanding how and why circuits are tuned by sex can provide important insights into neural and behavioral plasticity. Here we find that sexually dimorphic behavioral responses to C. elegans ascaroside sex pheromones are implemented by the functional modulation of shared chemosensory circuitry. In particular, the sexual state of a single sensory neuron pair, ADF, determines the nature of an animal's behavioral response regardless of the sex of the rest of the body. Genetic feminization of ADF causes males to be repelled by, rather than attracted to, ascarosides, whereas masculinization of ADF has the opposite effect in hermaphrodites. When ADF is ablated, both sexes are weakly repelled by ascarosides. Genetic sex modulates ADF function by tuning chemosensation: although ADF is functional in both sexes, it detects the ascaroside ascr#3 only in males, a consequence of cell-autonomous action of the master sexual regulator tra-1. This occurs in part through the conserved DM-domain gene mab-3, which promotes the male state of ADF. The sexual modulation of ADF has a key role in reproductive fitness, as feminization or ablation of ADF renders males unable to use ascarosides to locate mates. Our results reveal an economical mechanism in which sex-specific behavioral valence arises through the cell-autonomous regulation of a chemosensory switch by genetic sex, allowing a social cue with salience for both sexes to elicit navigational responses commensurate with the differing needs of each.
Collapse
Affiliation(s)
- Kelli A Fagan
- Neuroscience Graduate Program, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA
| | - Jintao Luo
- Del Monte Institute for Neuroscience, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA; Center for Neurotherapeutics Development, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA
| | - Ross C Lagoy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Room 4004, Worcester, MA 01605, USA
| | | | - Dirk R Albrecht
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Room 4004, Worcester, MA 01605, USA
| | - Douglas S Portman
- Del Monte Institute for Neuroscience, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA; Center for Neurotherapeutics Development, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA; Departments of Biomedical Genetics, Neuroscience, and Biology, University of Rochester, 601 Elmwood Avenue, Box 645, Rochester, NY 14610, USA.
| |
Collapse
|
33
|
Dong C, Reilly DK, Bergame C, Dolke F, Srinivasan J, von Reuss SH. Comparative Ascaroside Profiling of Caenorhabditis Exometabolomes Reveals Species-Specific (ω) and (ω - 2)-Hydroxylation Downstream of Peroxisomal β-Oxidation. J Org Chem 2018; 83:7109-7120. [PMID: 29480728 DOI: 10.1021/acs.joc.8b00094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemical communication in nematodes such as the model organism Caenorhabditis elegans is modulated by a variety of glycosides based on the dideoxysugar l-ascarylose. Comparative ascaroside profiling of nematode exometabolome extracts using a GC-EIMS screen reveals that several basic components including ascr#1 (asc-C7), ascr#2 (asc-C6-MK), ascr#3 (asc-ΔC9), ascr#5 (asc-ωC3), and ascr#10 (asc-C9) are highly conserved among the Caenorhabditis. Three novel side chain hydroxylated ascaroside derivatives were exclusively detected in the distantly related C. nigoni and C. afra. Molecular structures of these species-specific putative signaling molecules were elucidated by NMR spectroscopy and confirmed by total synthesis and chemical correlations. Biological activities were evaluated using attraction assays. The identification of (ω)- and (ω - 2)-hydroxyacyl ascarosides demonstrates how GC-EIMS-based ascaroside profiling facilitates the detection of novel ascaroside components and exemplifies how species-specific hydroxylation of ascaroside aglycones downstream of peroxisomal β-oxidation increases the structural diversity of this highly conserved class of nematode signaling molecules.
Collapse
Affiliation(s)
- Chuanfu Dong
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knoell Strasse 8 , D-07745 Jena , Germany.,Department for Integrative Evolutionary Biology , Max Planck Institute for Developmental Biology , Max-Planck-Ring 9 , D-72076 Tübingen , Germany
| | - Douglas K Reilly
- Department of Biology and Biotechnology , Worcester Polytechnic Institute , 60 Prescott Street , Worcester , Massachusetts 01605 , United States
| | - Célia Bergame
- Laboratory of Bioanalytical Chemistry , University of Neuchatel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| | - Franziska Dolke
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knoell Strasse 8 , D-07745 Jena , Germany
| | - Jagan Srinivasan
- Department of Biology and Biotechnology , Worcester Polytechnic Institute , 60 Prescott Street , Worcester , Massachusetts 01605 , United States
| | - Stephan H von Reuss
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knoell Strasse 8 , D-07745 Jena , Germany.,Laboratory of Bioanalytical Chemistry , University of Neuchatel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| |
Collapse
|
34
|
Barr MM, García LR, Portman DS. Sexual Dimorphism and Sex Differences in Caenorhabditis elegans Neuronal Development and Behavior. Genetics 2018; 208:909-935. [PMID: 29487147 PMCID: PMC5844341 DOI: 10.1534/genetics.117.300294] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
As fundamental features of nearly all animal species, sexual dimorphisms and sex differences have particular relevance for the development and function of the nervous system. The unique advantages of the nematode Caenorhabditis elegans have allowed the neurobiology of sex to be studied at unprecedented scale, linking ultrastructure, molecular genetics, cell biology, development, neural circuit function, and behavior. Sex differences in the C. elegans nervous system encompass prominent anatomical dimorphisms as well as differences in physiology and connectivity. The influence of sex on behavior is just as diverse, with biological sex programming innate sex-specific behaviors and modifying many other aspects of neural circuit function. The study of these differences has provided important insights into mechanisms of neurogenesis, cell fate specification, and differentiation; synaptogenesis and connectivity; principles of circuit function, plasticity, and behavior; social communication; and many other areas of modern neurobiology.
Collapse
Affiliation(s)
- Maureen M Barr
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854-8082
| | - L Rene García
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, New York 14642
- Department of Neuroscience, University of Rochester, New York 14642
- Department of Biology, University of Rochester, New York 14642
| |
Collapse
|