1
|
Zennifa F, Nakashima T, Xu Y, Koshio S, Tomimatsu E, Isa A, Satake K, Kishida F, Shimizu K. A pilot study on the effects of olfactory stimulation with white musk aromatic oil on psychophysiological activity: a crossover study. Sci Rep 2025; 15:1723. [PMID: 39799151 PMCID: PMC11724847 DOI: 10.1038/s41598-024-83887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025] Open
Abstract
Studies on the compounds of aromatic oils and their effects on psychophysiological changes in humans are often conducted separately. To obtain better validation, a suitable protocol is needed that can be extrapolated to large-scale olfactory stimulation experiments. Unfortunately, this type of study is still rarely performed. In this situation, we propose a randomized crossover pilot study on olfactory stimulation with aromatic oils in relation to changes in psychophysiological activity by focusing on white musk aromatic oil due to its popularity in the community. Chemical profiling by TDU-GC-MS (thermal desorption gas chromatography/mass spectrometry) was performed to understand the compounds of the aromatic oils presented. To understand the changes in the participants' impressions and mood states, POMS 2 (Profile of Mood States 2nd Edition) and VAS (Visual analogue scale) were performed in addition to physiological evaluation by using EEG (electroencephalogram), ECG (electrocardiogram) and salivary amylase measurements. The proposed pilot study showed "gorgeous", "sweet", and "like" impression toward white musk aromatic oil under VAS evaluation. Mood evaluation under POMS 2 variables such as Fatigue-Inertia (FI), Tension-anxiety (TA) and TMD (total mood disturbance) were significantly decreased under white musk aromatic oil inhalation. Under current protocol, we can also see the changes in autonomic activity and brain activity during olfactory stimulation. This pilot study could be the first step towards a larger sample size experiment on olfactory stimulation. This experiment has been registered to UMIN Clinical Trials Registry with register ID : UMIN000051972 on 24/08/2023.
Collapse
Affiliation(s)
- Fadilla Zennifa
- Department of Agro‑Environmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi‑ku, Fukuoka, 8190395, Japan
| | - Taisuke Nakashima
- Department of Agro‑Environmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi‑ku, Fukuoka, 8190395, Japan
| | - Yanli Xu
- Department of Agro‑Environmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi‑ku, Fukuoka, 8190395, Japan
| | - Saki Koshio
- Department of Agro‑Environmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi‑ku, Fukuoka, 8190395, Japan
| | - Erika Tomimatsu
- Department of Agro‑Environmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi‑ku, Fukuoka, 8190395, Japan
| | - Akiko Isa
- Department of Agro‑Environmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi‑ku, Fukuoka, 8190395, Japan
| | - Katsuya Satake
- Nextday Co., Ltd, 29-36 Sakuragaoka-cho, Shibuya-ku, Tokyo, 150-0031, Japan
| | - Fumi Kishida
- Department of Medical Laboratory Science, Faculty of Health Sciences, Junshin Gakuen University, 1-1-1 Chikushigaoka, Minami-ku, Fukuoka, 815-8510, Japan
| | - Kuniyoshi Shimizu
- Department of Agro‑Environmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi‑ku, Fukuoka, 8190395, Japan.
| |
Collapse
|
2
|
Výtvarová E, Lamoš M, Hlinka J, Goldemundová S, Rektor I, Bočková M. Revealing connectivity patterns of deep brain stimulation efficacy in Parkinson's disease. Sci Rep 2024; 14:31652. [PMID: 39738347 PMCID: PMC11686061 DOI: 10.1038/s41598-024-80630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/21/2024] [Indexed: 01/02/2025] Open
Abstract
The aim of this work was to study the effect of deep brain stimulation of the subthalamic nucleus (STN-DBS) on the subnetwork of subcortical and cortical motor regions and on the whole brain connectivity using the functional connectivity analysis in Parkinson's disease (PD). The high-density source space EEG was acquired and analyzed in 43 PD subjects in DBS on and DBS off stimulation states (off medication) during a cognitive-motor task. Increased high gamma band (50-100 Hz) connectivity within subcortical regions and between subcortical and cortical motor regions was significantly associated with the Movement Disorders Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III improvement after DBS. Whole brain neural correlates of cognitive performance were also detected in the high gamma (50-100 Hz) band. A whole brain multifrequency connectivity profile was found to classify optimal and suboptimal responders to DBS with a positive predictive value of 0.77, negative predictive value of 0.55, specificity of 0.73, and sensitivity of 0.60. Specific connectivity patterns related to PD, motor symptoms improvement after DBS, and therapy responsiveness predictive connectivity profiles were uncovered.
Collapse
Affiliation(s)
- Eva Výtvarová
- Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Sabina Goldemundová
- Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Martina Bočková
- Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic.
| |
Collapse
|
3
|
Gao C, Huang H, Zhan J, Li W, Li Y, Li J, Zhou J, Wang Y, Jiang Z, Chen W, Zhu Y, Zhuo Y, Wu K. Adaptive Changes in Neurovascular Properties With Binocular Accommodation Functions in Myopic Participants by 3D Visual Training: An EEG and fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2749-2758. [PMID: 39074027 DOI: 10.1109/tnsre.2024.3434492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Although three-dimensional visual training (3DVT) has been used for myopia intervention, its neural mechanisms remain largely unknown. In this study, visual function was examined before and after 3DVT, while resting-state EEG-fNIRS signals were recorded from 38 myopic participants. A graph theoretical analysis was applied to compute the neurovascular properties, including static brain networks (SBNs), dynamic brain networks (DBNs), and dynamic neurovascular coupling (DNC). Correlations between the changes in neurovascular properties and the changes in visual functions were calculated. After 3DVT, the local efficiency and node efficiency in the frontal lobes increased in the SBNs constructed from EEG δ -band; the global efficiency and node efficiency in the frontal-parietal lobes decreased in the DBNs variability constructed from EEG δ -band. For the DNC constructed with EEG α -band and oxyhemoglobin (HbO), the local efficiency decreased, for EEG α -band and deoxyhemoglobin (HbR), the node efficiency in the frontal-occipital lobes decreased. For the SBNs constructed from HbO, the functional connectivity (FC) between the frontal-occipital lobes increased. The DNC constructed between the FC of the frontal-parietal lobes from EEG β -band and the FC of the frontal-occipital lobes from HbO increased, and between the FC of the frontal-occipital lobes from EEG β -band and the FC of the inter-frontal lobes from HbR increased. The neurovascular properties were significantly correlated with the amplitude of accommodation and accommodative facility. The result indicated the positive effects of 3DVT on myopic participants, including improved efficiency of brain networks, increased FC of SBNs and DNC, and enhanced binocular accommodation functions.
Collapse
|
4
|
Kang Y, Zhang Y, Huang K, Wang Z. Association of dopamine-based genetic risk score with dynamic low-frequency fluctuations in first-episode drug-naïve schizophrenia. Brain Imaging Behav 2023; 17:584-594. [PMID: 37382826 DOI: 10.1007/s11682-023-00786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 06/30/2023]
Abstract
Alterations in dynamic intrinsic brain activity and signaling of neurotransmitters, such as dopamine, have been independently detected in schizophrenia patients. Yet, it remains unclear whether the dopamine genetic risk variants have association with brain intrinsic activity. We aimed to investigate the schizophrenia-specific dynamic amplitude of low frequency fluctuation (dALFF) altered pattern, and its association with dopamine genetic risk score in first-episode drug-naïve schizophrenia (FES). Fifty-two FES and 51 healthy controls were included. A sliding-window method based on the dALFF was adopted to estimate the dynamic alterations in intrinsic brain activity. Subjects were genotyped, and a genetic risk score (GRS), which combined the additive effects of ten risk genotypes from five dopamine-related genes, was calculated. We used the voxel-wise correlation analysis to explore the association of dopamine-GRS with dALFF. FES showed significantly increased dALFF left medial prefrontal cortex and significantly decreased dALFF in the right posterior cingulate cortex compared with healthy controls. Greater dopamine GRS in FES was associated with higher dALFF in the left middle frontal gyrus and left inferior parietal gyrus. Our findings indicate that cumulative dopamine genetic risk is associated with a known imaging phenotype for schizophrenia.
Collapse
Affiliation(s)
- Yafei Kang
- Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Youming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Kexin Huang
- West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhenhong Wang
- Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, School of Psychology, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
5
|
Zammit N, Muscat R. Alpha/beta-gamma decoupling in methylphenidate medicated ADHD patients. Front Neurosci 2023; 17:1267901. [PMID: 37841679 PMCID: PMC10570420 DOI: 10.3389/fnins.2023.1267901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
There is much interest to understand how different neural rhythms function, interact and are regulated. Here, we focus on WM delay gamma to investigate its coupling with alpha/beta rhythms and its neuromodulation by methylphenidate. We address this through the use of human EEG conducted in healthy and ADHD subjects which revealed ADHD-specific electrophysiological deficits and MPH-induced normalization of gamma amplitude and its coupling with alpha/beta rhythms. Decreased alpha/beta-gamma coupling is known to facilitate memory representations via disinhibition of gamma ensembles coding the maintained stimuli. Here, we present EEG evidence which suggests that these dynamics are sensitive to catecholaminergic neuromodulation. MPH decreased alpha/beta-gamma coupling and this was related to the increase in delay-relevant gamma activity evoked by the same drug. These results add further to the neuromodulatory findings that reflect an electrophysiological dimension to the well-known link between WM delay and catecholaminergic transmission.
Collapse
Affiliation(s)
- Nowell Zammit
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Richard Muscat
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| |
Collapse
|
6
|
Zaldivar D, Koyano KW, Ye FQ, Godlove DC, Park SH, Russ BE, Bhik-Ghanie R, Leopold DA. Brain-wide functional connectivity of face patch neurons during rest. Proc Natl Acad Sci U S A 2022; 119:e2206559119. [PMID: 36044550 PMCID: PMC9457296 DOI: 10.1073/pnas.2206559119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
The brain is a highly organized, dynamic system whose network architecture is often assessed through resting functional magnetic resonance imaging (fMRI) functional connectivity. The functional interactions between brain areas, including those observed during rest, are assumed to stem from the collective influence of action potentials carried by long-range neural projections. However, the contribution of individual neurons to brain-wide functional connectivity has not been systematically assessed. Here we developed a method to concurrently measure and compare the spiking activity of local neurons with fMRI signals measured across the brain during rest. We recorded spontaneous activity from neural populations in cortical face patches in the macaque during fMRI scanning sessions. Individual cells exhibited prominent, bilateral coupling with fMRI fluctuations in a restricted set of cortical areas inside and outside the face patch network, partially matching the pattern of known anatomical projections. Within each face patch population, a subset of neurons was positively coupled with the face patch network and another was negatively coupled. The same cells showed inverse correlations with distinct subcortical structures, most notably the lateral geniculate nucleus and brainstem neuromodulatory centers. Corresponding connectivity maps derived from fMRI seeds and local field potentials differed from the single unit maps, particularly in subcortical areas. Together, the results demonstrate that the spiking fluctuations of neurons are selectively coupled with discrete brain regions, with the coupling governed in part by anatomical network connections and in part by indirect neuromodulatory pathways.
Collapse
Affiliation(s)
- Daniel Zaldivar
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Kenji W. Koyano
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Frank Q. Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute for Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - David C. Godlove
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Soo Hyun Park
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Brian E. Russ
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Rebecca Bhik-Ghanie
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - David A. Leopold
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute for Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
7
|
Martínez-Cañada P, Noei S, Panzeri S. Methods for inferring neural circuit interactions and neuromodulation from local field potential and electroencephalogram measures. Brain Inform 2021; 8:27. [PMID: 34910260 PMCID: PMC8674171 DOI: 10.1186/s40708-021-00148-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
Electrical recordings of neural mass activity, such as local field potentials (LFPs) and electroencephalograms (EEGs), have been instrumental in studying brain function. However, these aggregate signals lack cellular resolution and thus are not easy to be interpreted directly in terms of parameters of neural microcircuits. Developing tools for a reliable estimation of key neural parameters from these signals, such as the interaction between excitation and inhibition or the level of neuromodulation, is important for both neuroscientific and clinical applications. Over the years, we have developed tools based on neural network modeling and computational analysis of empirical data to estimate neural parameters from aggregate neural signals. This review article gives an overview of the main computational tools that we have developed and employed to invert LFPs and EEGs in terms of circuit-level neural phenomena, and outlines future challenges and directions for future research.
Collapse
Affiliation(s)
- Pablo Martínez-Cañada
- Neural Computation Laboratory, Istituto Italiano Di Tecnologia, Genova and Rovereto, Italy
- Optical Approaches To Brain Function Laboratory, Istituto Italiano Di Tecnologia, Genova, Italy
| | - Shahryar Noei
- Neural Computation Laboratory, Istituto Italiano Di Tecnologia, Genova and Rovereto, Italy
- CIMeC, University of Trento, Rovereto, Italy
| | - Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano Di Tecnologia, Genova and Rovereto, Italy.
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
8
|
Macedo-Lima M, Remage-Healey L. Dopamine Modulation of Motor and Sensory Cortical Plasticity among Vertebrates. Integr Comp Biol 2021; 61:316-336. [PMID: 33822047 PMCID: PMC8600016 DOI: 10.1093/icb/icab019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Goal-directed learning is a key contributor to evolutionary fitness in animals. The neural mechanisms that mediate learning often involve the neuromodulator dopamine. In higher order cortical regions, most of what is known about dopamine's role is derived from brain regions involved in motivation and decision-making, while significantly less is known about dopamine's potential role in motor and/or sensory brain regions to guide performance. Research on rodents and primates represents over 95% of publications in the field, while little beyond basic anatomy is known in other vertebrate groups. This significantly limits our general understanding of how dopamine signaling systems have evolved as organisms adapt to their environments. This review takes a pan-vertebrate view of the literature on the role of dopamine in motor/sensory cortical regions, highlighting, when available, research on non-mammalian vertebrates. We provide a broad perspective on dopamine function and emphasize that dopamine-induced plasticity mechanisms are widespread across all cortical systems and associated with motor and sensory adaptations. The available evidence illustrates that there is a strong anatomical basis-dopamine fibers and receptor distributions-to hypothesize that pallial dopamine effects are widespread among vertebrates. Continued research progress in non-mammalian species will be crucial to further our understanding of how the dopamine system evolved to shape the diverse array of brain structures and behaviors among the vertebrate lineage.
Collapse
Affiliation(s)
- Matheus Macedo-Lima
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
- CAPES Foundation, Ministry of Education of Brazil, 70040-031 Brasília, Brazil
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Karvat G, Alyahyay M, Diester I. Spontaneous activity competes with externally evoked responses in sensory cortex. Proc Natl Acad Sci U S A 2021; 118:e2023286118. [PMID: 34155142 PMCID: PMC8237647 DOI: 10.1073/pnas.2023286118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The interaction between spontaneous and externally evoked neuronal activity is fundamental for a functional brain. Increasing evidence suggests that bursts of high-power oscillations in the 15- to 30-Hz beta-band represent activation of internally generated events and mask perception of external cues. Yet demonstration of the effect of beta-power modulation on perception in real time is missing, and little is known about the underlying mechanism. Here, we used a closed-loop stimulus-intensity adjustment system based on online burst-occupancy analyses in rats involved in a forepaw vibrotactile detection task. We found that the masking influence of burst occupancy on perception can be counterbalanced in real time by adjusting the vibration amplitude. Offline analysis of firing rates (FRs) and local field potentials across cortical layers and frequency bands confirmed that beta-power in the somatosensory cortex anticorrelated with sensory evoked responses. Mechanistically, bursts in all bands were accompanied by transient synchronization of cell assemblies, but only beta-bursts were followed by a reduction of FR. Our closed loop approach reveals that spontaneous beta-bursts reflect a dynamic state that competes with external stimuli.
Collapse
Affiliation(s)
- Golan Karvat
- Optophysiology Lab, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- Bernstein Center for Computational Neuroscience Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Mansour Alyahyay
- Optophysiology Lab, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
| | - Ilka Diester
- Optophysiology Lab, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany;
- Bernstein Center for Computational Neuroscience Freiburg, University of Freiburg, 79104 Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
- Intelligent Machine Brain Interfacing Technology (IMBIT), 79110 Freiburg, Germany
| |
Collapse
|
10
|
Wiers CE, Zhao J, Manza P, Murani K, Ramirez V, Zehra A, Freeman C, Yuan K, Wang GJ, Demiral SB, Childress AR, Tomasi D, Volkow ND. Conscious and unconscious brain responses to food and cocaine cues. Brain Imaging Behav 2021; 15:311-319. [PMID: 32125616 DOI: 10.1007/s11682-020-00258-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Visual presentation of appetitive and negative cues triggers fast responses in the human brain. Here we assessed functional MRI (fMRI) responses to food, cocaine, and neutral cues presented at a subliminal ("unconscious", 33 ms) and supraliminal ("conscious", 750 and 3000 ms) level in healthy, cocaine naïve volunteers. Because there is evidence of circadian variability in reward sensitivity, our second aim was to assess diurnal variability in the brain's reactivity to cues. Sixteen participants completed two randomly ordered fMRI sessions (once 9-11 AM and another 5-7 PM). in which food, cocaine, and neutral cues were presented for 33, 750 and 3000 ms. Participants rated food cues as positive and "wanted" (more so in evenings than mornings), and cocaine cues as negative (no diurnal differences). fMRI showed occipital cortex activation for food>neutral, cocaine>neutral and cocaine>food; dorsolateral prefrontal cortex for cocaine>neutral and cocaine>food, and midbrain for cocaine>food (all pFWE < 0.05). When comparing unconscious (33 ms) > conscious (750 and 3000 ms) presentations, we observed significant differences for cocaine>neutral and cocaine>food in occipital cortex, for cocaine>neutral in the insula/temporal lobe, and for food>neutral in the middle temporal gyrus (pFWE < 0.05). No diurnal differences for brain activations were observed. We interpret these findings to suggest that negative items (e.g., cocaine) might be perceived at a faster speed than positive ones (e.g., food), although we cannot rule out that the higher saliency of cocaine cues, which would be novel to non-drug using individuals, contributed to the faster speed of detection.
Collapse
Affiliation(s)
- Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD, 20892, USA.
| | - Jizheng Zhao
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD, 20892, USA
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD, 20892, USA
| | - Kristina Murani
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD, 20892, USA
| | - Veronica Ramirez
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD, 20892, USA
| | - Amna Zehra
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD, 20892, USA
| | - Clara Freeman
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD, 20892, USA
| | - Kai Yuan
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD, 20892, USA
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD, 20892, USA
| | - Sükrü Barış Demiral
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD, 20892, USA
| | - Anna Rose Childress
- Center for Studies on Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD, 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD, 20892, USA.
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Martínez-Cañada P, Noei S, Panzeri S. Inferring Neural Circuit Interactions and Neuromodulation from Local Field Potential and Electroencephalogram Measures. Brain Inform 2021. [DOI: 10.1007/978-3-030-86993-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Dan R, Růžička F, Bezdicek O, Roth J, Růžička E, Vymazal J, Goelman G, Jech R. Impact of dopamine and cognitive impairment on neural reactivity to facial emotion in Parkinson's disease. Eur Neuropsychopharmacol 2019; 29:1258-1272. [PMID: 31607424 DOI: 10.1016/j.euroneuro.2019.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022]
Abstract
Emotional and cognitive impairments in Parkinson's disease (PD) are prevalent, hamper interpersonal relations and reduce quality of life. It is however unclear to what extent these domains interplay in PD-related deficits and how they are influenced by dopaminergic availability. This study examined the effect of cognitive impairment and dopaminergic medication on neural and behavioral mechanisms of facial emotion recognition in PD patients. PD patients on and off dopaminergic medication and matched healthy controls underwent an emotional face matching task during functional MRI. In addition, a comprehensive neuropsychological evaluation of cognitive function was conducted. Increased BOLD response to emotional faces was found in the visual cortex of PD patients relative to controls irrespective of cognitive function and medication status. Administration of dopaminergic medication in PD patients resulted in restored behavioral accuracy for emotional faces relative to controls and decreased retrosplenial cortex BOLD response to emotion relative to off-medication state. Furthermore, cognitive impairment in PD patients was associated with reduced behavioral accuracy for non-emotional stimuli and predicted BOLD response to emotion in the anterior and posterior cingulate cortices, depending on medication status. Findings of aberrant visual and retrosplenial BOLD response to emotion are suggested to stem from altered attentional and/or emotion-driven modulation from subcortical and higher cortical regions. Our results indicate neural disruptions and behavioral deficits in emotion processing in PD patients that are dependent on dopaminergic availability and independent of cognitive function. Our findings highlight the importance of dopaminergic treatment not only for the motor symptoms but also the emotional disturbances in PD.
Collapse
Affiliation(s)
- Rotem Dan
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Filip Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia; Department of Radiology, Na Homolce Hospital, Prague, Czechia
| | - Ondrej Bezdicek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia
| | - Jan Roth
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia
| | - Evžen Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia
| | - Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Prague, Czechia
| | - Gadi Goelman
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia; Department of Radiology, Na Homolce Hospital, Prague, Czechia
| |
Collapse
|
13
|
Attentional blink and putative noninvasive dopamine markers: Two experiments to consolidate possible associations. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:1444-1457. [PMID: 31396846 PMCID: PMC6861702 DOI: 10.3758/s13415-019-00717-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adaptive behavioral control involves a balance between top-down persistence and flexible updating of goals under changing demands. According to the metacontrol state model (MSM), this balance emerges from the interaction between the frontal and the striatal dopaminergic system. The attentional blink (AB) task has been argued to tap into the interaction between persistence and flexibility, as it reflects overpersistence—the too-exclusive allocation of attentional resources to the processing of the first of two consecutive targets. Notably, previous studies are inconclusive about the association between the AB and noninvasive proxies of dopamine including the spontaneous eye blink rate (sEBR), which allegedly assesses striatal dopamine levels. We aimed to substantiate and extend previous attempts to predict individual sizes of the AB in two separate experiments with larger sample sizes (N = 71 & N = 65) by means of noninvasive behavioral and physiological proxies of dopamine (DA), such as sEBR and mood measures, which are likely to reflect striatal dopamine levels, and color discrimination, which has been argued to tap into the frontal dopamine levels. Our findings did not confirm the prediction that AB size covaries with sEBR, mood, or color discrimination. The implications of this inconsistency with previous observations are discussed.
Collapse
|
14
|
Neurotransmitters are released in brain areas according to ultradian rhythms: Coincidence with ultradian oscillations of EEG waves. J Chem Neuroanat 2018; 96:66-72. [PMID: 30576780 DOI: 10.1016/j.jchemneu.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/23/2022]
Abstract
Use of the push-pull superfusing technique has shown that in the brain the release rates of endogenous catecholamines, GABA, glutamate and histamine are not constant but fluctuate temporally according to ultradian rhythms. Rhythmic fluctuations have been found in the posterior and anterior hypothalamus, the locus coeruleus, the nucleus of the solitary tract, the mammillary body and the medial amygdaloid nucleus of cats and rats. Similar fluctuations appear in the nitric oxide signal registered in the nucleus accumbens, as well as in the power of delta and theta waves of the EEG in the posterior hypothalamus. The EEG rhythmic fluctuations are generated in the arcuate nucleus because they disappear after its electrocoagulation. The frequency of the EEG fluctuations is increased, decreased or even abolished when catecholamine or histamine receptor agonists and antagonists are centrally applied showing that the EEG ultradian rhythm is controlled by catecholaminergic and histaminergic neurons. Moreover, the rhythmic fluctuations of delta and theta waves corelate negatively with those of histamine in the rat posterior hypothalamus. The possible role of these rhythmic fluctuations is discussed. Their potential importance for pharmacotherapy is still unknown.
Collapse
|
15
|
Two distinct profiles of fMRI and neurophysiological activity elicited by acetylcholine in visual cortex. Proc Natl Acad Sci U S A 2018; 115:E12073-E12082. [PMID: 30510000 PMCID: PMC6304994 DOI: 10.1073/pnas.1808507115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
fMRI changes are typically assumed to be due to changes in neural activity, although whether this remains valid under the influence of neuromodulators is relatively unknown. Here, we found evidence that intracortical acetylcholine elicits distinct profiles of fMRI and electrophysiological activity in visual cortex. Two patterns of cholinergic activity were observed, depending on the distance to the injection site, although neurovascular coupling was preserved. Our results illustrate the effects of neuromodulators on fMRI and electrophysiological responses and show that these depend on neuromodulator concentration and kinetics. Cholinergic neuromodulation is involved in all aspects of sensory processing and is crucial for processes such as attention, learning and memory, etc. However, despite the known roles of acetylcholine (ACh), we still do not how to disentangle ACh contributions from sensory or task-evoked changes in functional magnetic resonance imaging (fMRI). Here, we investigated the effects of local injection of ACh on fMRI and neural signals in the primary visual cortex (V1) of anesthetized macaques by combining pharmaco-based MRI (phMRI) with electrophysiological recordings, using single electrodes and electrode arrays. We found that local injection of ACh elicited two distinct profiles of fMRI and neurophysiological activity, depending on the distance from the injector. Near the injection site, we observed an increase in the baseline blood oxygen-level-dependent (BOLD) and cerebral blood flow (CBF) responses, while their visual modulation decreased. In contrast, further from the injection site, we observed an increase in the visually induced BOLD and CBF modulation without changes in baseline. Neurophysiological recordings suggest that the spatial correspondence between fMRI responses and neural activity does not change in the gamma, high-gamma, and multiunit activity (MUA) bands. The results near the injection site suggest increased inhibitory drive and decreased metabolism, contrasting to the far region. These changes are thought to reflect the kinetics of ACh and its metabolism to choline.
Collapse
|
16
|
Miller EK, Lundqvist M, Bastos AM. Working Memory 2.0. Neuron 2018; 100:463-475. [PMID: 30359609 PMCID: PMC8112390 DOI: 10.1016/j.neuron.2018.09.023] [Citation(s) in RCA: 480] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 12/24/2022]
Abstract
Working memory is the fundamental function by which we break free from reflexive input-output reactions to gain control over our own thoughts. It has two types of mechanisms: online maintenance of information and its volitional or executive control. Classic models proposed persistent spiking for maintenance but have not explicitly addressed executive control. We review recent theoretical and empirical studies that suggest updates and additions to the classic model. Synaptic weight changes between sparse bursts of spiking strengthen working memory maintenance. Executive control acts via interplay between network oscillations in gamma (30-100 Hz) in superficial cortical layers (layers 2 and 3) and alpha and beta (10-30 Hz) in deep cortical layers (layers 5 and 6). Deep-layer alpha and beta are associated with top-down information and inhibition. It regulates the flow of bottom-up sensory information associated with superficial layer gamma. We propose that interactions between different rhythms in distinct cortical layers underlie working memory maintenance and its volitional control.
Collapse
Affiliation(s)
- Earl K Miller
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Mikael Lundqvist
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - André M Bastos
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Surprise About Sensory Event Timing Drives Cortical Transients in the Beta Frequency Band. J Neurosci 2018; 38:7600-7610. [PMID: 30030396 DOI: 10.1523/jneurosci.0307-18.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/24/2018] [Accepted: 06/20/2018] [Indexed: 11/21/2022] Open
Abstract
Learning the statistical structure of the environment is crucial for adaptive behavior. Humans and nonhuman decision-makers seem to track such structure through a process of probabilistic inference, which enables predictions about behaviorally relevant events. Deviations from such predictions cause surprise, which in turn helps improve inference. Surprise about the timing of behaviorally relevant sensory events drives phasic responses of neuromodulatory brainstem systems, which project to the cerebral cortex. Here, we developed a computational model-based magnetoencephalography (MEG) approach for mapping the resulting cortical transients across space, time, and frequency, in the human brain (N = 28, 17 female). We used a Bayesian ideal observer model to learn the statistics of the timing of changes in a simple visual detection task. This model yielded quantitative trial-by-trial estimates of temporal surprise. The model-based surprise variable predicted trial-by-trial variations in reaction time more strongly than the externally observable interval timings alone. Trial-by-trial variations in surprise were negatively correlated with the power of cortical population activity measured with MEG. This surprise-related power suppression occurred transiently around the behavioral response, specifically in the beta frequency band. It peaked in parietal and prefrontal cortices, remote from the motor cortical suppression of beta power related to overt report (button press) of change detection. Our results indicate that surprise about sensory event timing transiently suppresses ongoing beta-band oscillations in association cortex. This transient suppression of frontal beta-band oscillations might reflect an active reset triggered by surprise, and is in line with the idea that beta-oscillations help maintain cognitive sets.SIGNIFICANCE STATEMENT The brain continuously tracks the statistical structure of the environment to anticipate behaviorally relevant events. Deviations from such predictions cause surprise, which in turn drives neural activity in subcortical brain regions that project to the cerebral cortex. We used magnetoencephalography in humans to map out surprise-related modulations of cortical population activity across space, time, and frequency. Surprise was elicited by variable timing of visual stimulus changes requiring a behavioral response. Surprise was quantified by means of an ideal observer model. Surprise predicted behavior as well as a transient suppression of beta frequency-band oscillations in frontal cortical regions. Our results are in line with conceptual accounts that have linked neural oscillations in the beta-band to the maintenance of cognitive sets.
Collapse
|
18
|
Jacob SN, Nienborg H. Monoaminergic Neuromodulation of Sensory Processing. Front Neural Circuits 2018; 12:51. [PMID: 30042662 PMCID: PMC6048220 DOI: 10.3389/fncir.2018.00051] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
All neuronal circuits are subject to neuromodulation. Modulatory effects on neuronal processing and resulting behavioral changes are most commonly reported for higher order cognitive brain functions. Comparatively little is known about how neuromodulators shape processing in sensory brain areas that provide the signals for downstream regions to operate on. In this article, we review the current knowledge about how the monoamine neuromodulators serotonin, dopamine and noradrenaline influence the representation of sensory stimuli in the mammalian sensory system. We review the functional organization of the monoaminergic brainstem neuromodulatory systems in relation to their role for sensory processing and summarize recent neurophysiological evidence showing that monoamines have diverse effects on early sensory processing, including changes in gain and in the precision of neuronal responses to sensory inputs. We also highlight the substantial evidence for complementarity between these neuromodulatory systems with different patterns of innervation across brain areas and cortical layers as well as distinct neuromodulatory actions. Studying the effects of neuromodulators at various target sites is a crucial step in the development of a mechanistic understanding of neuronal information processing in the healthy brain and in the generation and maintenance of mental diseases.
Collapse
Affiliation(s)
- Simon N Jacob
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hendrikje Nienborg
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Dukart J, Holiga Š, Chatham C, Hawkins P, Forsyth A, McMillan R, Myers J, Lingford-Hughes AR, Nutt DJ, Merlo-Pich E, Risterucci C, Boak L, Umbricht D, Schobel S, Liu T, Mehta MA, Zelaya FO, Williams SC, Brown G, Paulus M, Honey GD, Muthukumaraswamy S, Hipp J, Bertolino A, Sambataro F. Cerebral blood flow predicts differential neurotransmitter activity. Sci Rep 2018; 8:4074. [PMID: 29511260 PMCID: PMC5840131 DOI: 10.1038/s41598-018-22444-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Application of metabolic magnetic resonance imaging measures such as cerebral blood flow in translational medicine is limited by the unknown link of observed alterations to specific neurophysiological processes. In particular, the sensitivity of cerebral blood flow to activity changes in specific neurotransmitter systems remains unclear. We address this question by probing cerebral blood flow in healthy volunteers using seven established drugs with known dopaminergic, serotonergic, glutamatergic and GABAergic mechanisms of action. We use a novel framework aimed at disentangling the observed effects to contribution from underlying neurotransmitter systems. We find for all evaluated compounds a reliable spatial link of respective cerebral blood flow changes with underlying neurotransmitter receptor densities corresponding to their primary mechanisms of action. The strength of these associations with receptor density is mediated by respective drug affinities. These findings suggest that cerebral blood flow is a sensitive brain-wide in-vivo assay of metabolic demands across a variety of neurotransmitter systems in humans.
Collapse
Affiliation(s)
- Juergen Dukart
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland.
| | - Štefan Holiga
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Christopher Chatham
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Peter Hawkins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jim Myers
- Neuropsychopharmacology Unit, Imperial College London, London, United Kingdom
| | | | - David J Nutt
- Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Emilio Merlo-Pich
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Celine Risterucci
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Lauren Boak
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Daniel Umbricht
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Scott Schobel
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Thomas Liu
- Center for Functional MRI, University of California San Diego, 9500 Gilman Drive MC 0677, La Jolla, CA 92093, United States
- Departments of Radiology, Psychiatry and Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Fernando O Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Steve C Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Gregory Brown
- University of California, San Diego, La Jolla, USA
- Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Martin Paulus
- University of California, San Diego, La Jolla, USA
- Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Garry D Honey
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Joerg Hipp
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Alessandro Bertolino
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
- Institute Of Psychiatry, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Fabio Sambataro
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
- Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, Udine, Italy
| |
Collapse
|