1
|
Clark CJ, Hutchinson JR, Garland T. The Inverse Krogh Principle: All Organisms Are Worthy of Study. Physiol Biochem Zool 2023; 96:1-16. [PMID: 36626844 DOI: 10.1086/721620] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractKrogh's principle states, "For such a large number of problems there will be some animal of choice, or a few such animals, on which it can be most conveniently studied." The downside of picking a question first and then finding an ideal organism on which to study it is that it will inevitably leave many organisms neglected. Here, we promote the inverse Krogh principle: all organisms are worthy of study. The inverse Krogh principle and the Krogh principle are not opposites. Rather, the inverse Krogh principle emphasizes a different starting point for research: start with a biological unit, such as an organism, clade, or specific organism trait, then seek or create tractable research questions. Even the hardest-to-study species have research questions that can be asked of them: Where does it fall within the tree of life? What resources does it need to survive and reproduce? How does it differ from close relatives? Does it have unique adaptations? The Krogh and inverse Krogh approaches are complementary, and many research programs naturally include both. Other considerations for picking a study species include extreme species, species informative for phylogenetic analyses, and the creation of models when a suitable species does not exist. The inverse Krogh principle also has pitfalls. A scientist that picks the organism first might choose a research question not really suited to the organism, and funding agencies rarely fund organism-centered grant proposals. The inverse Krogh principle does not call for all organisms to receive the same amount of research attention. As knowledge continues to accumulate, some organisms-models-will inevitably have more known about them than others. Rather, it urges a broader search across organismal diversity to find sources of inspiration for research questions and the motivation needed to pursue them.
Collapse
|
2
|
Clark CJ, Duncan J, Dougherty R. Great Gray Owls hunting voles under snow hover to defeat an acoustic mirage. Proc Biol Sci 2022; 289:20221164. [PMID: 36416044 PMCID: PMC9682441 DOI: 10.1098/rspb.2022.1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
How do Great Gray Owls (
Strix nebulosa
) capture voles (Cricetidae) through a layer of snow? As snow is a visual barrier, the owls locate voles by ear alone. To test how snow absorbs and refracts vole sound, we inserted a loudspeaker under the snowpack and analysed sound from the loudspeaker, first buried, then unburied. Snow attenuation coefficients rose with frequency (0.3 dB cm
−1
at 500 Hz, 0.6 dB cm
−1
at 3 kHz) such that low-frequency sound transmitted best. The Great Gray Owl has the largest facial disc of any owl, suggesting they are adapted to use this low-frequency sound. We used an acoustic camera to spatially localize sound source location, and show that snow also refracts prey sounds (refractive index: 1.16). To an owl not directly above the prey, this refraction creates an ‘acoustic mirage’: prey acoustic position is offset from its actual location. Their hunting strategy defeats this mirage because they hover directly over prey, which is the listening position with least refraction and least attenuation. Among all birds, the Great Gray Owl has the most extreme wing morphologies associated with quiet flight. These extreme wing traits may function to reduce the sounds of hovering, with implications for bioinspiration.
Collapse
Affiliation(s)
- Christopher J. Clark
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - James Duncan
- Discover Owls, Balmoral, Manitoba, Canada R03 0H0
| | - Robert Dougherty
- Department of Aeronautics & Astronautics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Abstract
Abstract
Among size-dimorphic animals, a few clades such as hummingbirds show “reversed” sexual size dimorphism: females tend to be the larger sex. What selects for this pattern? Sexual selection for flight performance could drive the evolution of smaller, more agile males, either for male-male combat or female choice for aerial courtship displays. Alternately, natural selection can select for female fecundity (e.g., egg size influences female body size), or sex differences in foraging niche could favor body size differences. The sexual selection hypotheses predict that dimorphism extends to other aspects of flight morphology (e.g., flight muscle size) whereas the natural selection hypotheses predict that male and female flight morphologies are isometric, and the niche differentiation hypothesis predicts that bill dimorphism is correlated with size dimorphism. We tested these predictions through phylogenetic comparative analyses of flight morphology, wingbeat frequency, and courtship behaviors, focused on 30 species within the “bee” hummingbird clade (tribe Mellisugini). There is no correlation between bill morphology and dimorphism. Relative to females, males tend to be smaller, have proportionately shorter wings and higher hovering wingbeat frequencies, but also longer keels and larger flight muscles. Male wingbeat frequencies are greatly elevated during aerial displays, and the species with the greatest wingbeat frequencies have the greatest dimorphism. Of the four hypotheses for dimorphism, the data best support the hypothesis that female choice for courtship displays has selected for aerial agility and small size in male hummingbirds.
Collapse
Affiliation(s)
- Sean C Wilcox
- Department of Evolution, Ecology and Organismal Biology, University of California , Riverside, CA 92521 , USA
- Biological Sciences Department, Moorpark College , Moorpark, CA 93021 , USA
| | - Christopher J Clark
- Department of Evolution, Ecology and Organismal Biology, University of California , Riverside, CA 92521 , USA
| |
Collapse
|
4
|
Antolínez CA, Martini X, Stelinski LL, Rivera MJ. Wind Speed and Direction Drive Assisted Dispersal of Asian Citrus Psyllid. ENVIRONMENTAL ENTOMOLOGY 2022; 51:305-312. [PMID: 34897406 DOI: 10.1093/ee/nvab140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 06/14/2023]
Abstract
Wind directly influences the spread of vector-borne plant pathogens by driving the passive dispersal of vectors to potentially new areas. Here, we evaluated the effect of wind speed and direction on the dispersal of the Asian citrus psyllid (ACP), Diaphorina citri (Kuwayama) (Hemiptera: Psyllidae), the vector of the bacteria causing huanglongbing (HLB), a lethal disease of citrus. The effect of different wind speeds on short or long-distance dispersal of ACP was investigated using a high-speed wind tunnel under laboratory conditions. The effect of wind direction on ACP dispersal under field conditions was evaluated using custom-made wind vane-style traps. In wind tunnel assays, ACP remained on plants until wind treatments reached ≥48 km/h when psyllids were mostly dislodged from plants and moved by the wind. For a short-distance, wind-driven movement (movement by the wind from one plant to another), the effect of wind speed was not significant at any of the wind speed treatments tested. Wind vane traps placed in a Florida citrus grove captured significantly more ACP on the windward side, suggesting that ACP were moved with the wind. The number of ACP found on the windward side of traps was significantly higher from May to August. These results indicate that ACP is likely to disperse with prevailing wind direction and that settled ACP may become dislodged and moved at random by high wind speeds occurring in areas of significant citrus production (southern California, Florida, or Texas).
Collapse
Affiliation(s)
- Carlos A Antolínez
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Xavier Martini
- North Florida Research and Education Center, Department of Entomology and Nematology, University of Florida, Quincy, FL, USA
| | - Lukasz L Stelinski
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida, Lake Alfred, FL, USA
| | - Monique J Rivera
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
5
|
Echeverri SA, Miller AE, Chen J, McQueen EW, Plakke M, Spicer M, Hoke KL, Stoddard MC, Morehouse NI. How signaling geometry shapes the efficacy and evolution of animal communication systems. Integr Comp Biol 2021; 61:787-813. [PMID: 34021338 DOI: 10.1093/icb/icab090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Animal communication is inherently spatial. Both signal transmission and signal reception have spatial biases-involving direction, distance and position-that interact to determine signaling efficacy. Signals, be they visual, acoustic, or chemical, are often highly directional. Likewise, receivers may only be able to detect signals if they arrive from certain directions. Alignment between these directional biases is therefore critical for effective communication, with even slight misalignments disrupting perception of signaled information. In addition, signals often degrade as they travel from signaler to receiver, and environmental conditions that impact transmission can vary over even small spatiotemporal scales. Thus, how animals position themselves during communication is likely to be under strong selection. Despite this, our knowledge regarding the spatial arrangements of signalers and receivers during communication remains surprisingly coarse for most systems. We know even less about how signaler and receiver behaviors contribute to effective signaling alignment over time, or how signals themselves may have evolved to influence and/or respond to these aspects of animal communication. Here, we first describe why researchers should adopt a more explicitly geometric view of animal signaling, including issues of location, direction, and distance. We then describe how environmental and social influences introduce further complexities to the geometry of signaling. We discuss how multimodality offers new challenges and opportunities for signalers and receivers. We conclude with recommendations and future directions made visible by attention to the geometry of signaling.
Collapse
Affiliation(s)
| | - Audrey E Miller
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ
| | - Jason Chen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Biology, Emory University, Atlanta, GA
| | - Eden W McQueen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Melissa Plakke
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS
| | - Michelle Spicer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Biology Department, University of Puget Sound, Tacoma, WA
| | - Kim L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO
| | | | - Nathan I Morehouse
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
6
|
Bent AM, Ings TC, Mowles SL. Does anthropogenic noise affect the acoustic courtship interactions of Gryllus bimaculatus? Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Hightower BJ, Wijnings PW, Scholte R, Ingersoll R, Chin DD, Nguyen J, Shorr D, Lentink D. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight. eLife 2021; 10:63107. [PMID: 33724182 PMCID: PMC8055270 DOI: 10.7554/elife.63107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/28/2021] [Indexed: 11/18/2022] Open
Abstract
How hummingbirds hum is not fully understood, but its biophysical origin is encoded in the acoustic nearfield. Hence, we studied six freely hovering Anna’s hummingbirds, performing acoustic nearfield holography using a 2176 microphone array in vivo, while also directly measuring the 3D aerodynamic forces using a new aerodynamic force platform. We corroborate the acoustic measurements by developing an idealized acoustic model that integrates the aerodynamic forces with wing kinematics, which shows how the timbre of the hummingbird’s hum arises from the oscillating lift and drag forces on each wing. Comparing birds and insects, we find that the characteristic humming timbre and radiated power of their flapping wings originates from the higher harmonics in the aerodynamic forces that support their bodyweight. Our model analysis across insects and birds shows that allometric deviation makes larger birds quieter and elongated flies louder, while also clarifying complex bioacoustic behavior. Anyone walking outdoors has heard the whooshing sound of birdwings flapping overhead, the buzzing sound of bees flying by, or the whining of mosquitos seeking blood. All animals with flapping wings make these sounds, but the hummingbird makes perhaps the most delightful sound of all: their namesake hum. Yet, how hummingbirds hum is poorly understood. Bird wings generate large vortices of air to boost their lift and hover in the air that can generate tones. Further, the airflow over bird wings can be highly turbulent, meaning it can generate loud sounds, like the jets of air coming out of the engines of aircraft. Given all the sound-generating mechanisms at hand, it is difficult to determine why some wings buzz whereas others whoosh or hum. Hightower, Wijnings et al. wanted to understand the physical mechanism that causes animal wings to whine, buzz, hum or whoosh in flight. They hypothesized that the aerodynamic forces generated by animal wings are the main source of their characteristic wing sounds. Hummingbird wings have the most features in common with different animals’ wings, while also featuring acoustically complex feathers. This makes them ideal models for deciphering how birds, bats and even insects make wing sounds. To learn more about wing sounds, Hightower, Wijnings et al. studied how a species of hummingbird called Anna’s hummingbird hums while drinking nectar from a flower. A three-dimensional ‘acoustic hologram’ was generated using 2,176 microphones to measure the humming sound from all directions. In a follow-up experiment, the aerodynamic forces the hummingbird wings generate to hover were also measured. Their wingbeat was filmed simultaneously in slow-motion in both experiments. Hightower, Wijnings et al. then used a mathematical model that governs the wing’s aeroacoustics to confirm that the aerodynamic forces generated by the hummingbirds’ wings cause the humming sound heard when they hover in front of a flower. The model shows that the oscillating aerodynamic forces generate harmonics, which give the wings’ hum the acoustic quality of a musical instrument. Using this model Hightower, Wijnings et al. found that the differences in the aerodynamic forces generated by bird and insect wings cause the characteristic timbres of their whines, buzzes, hums, or whooshes. They also determined how these sounds scale with body mass and flapping frequency across 170 insect species and 80 bird species. This showed that mosquitos are unusually loud for their body size due to the unusual unsteadiness of the aerodynamic forces they generate in flight. These results explain why flying animals’ wings sound the way they do – for example, why larger birds are quieter and mosquitos louder. Better understanding of how the complex forces generated by animal wings create sound can advance the study of how animals change their wingbeat to communicate. Further, the model that explains how complex aerodynamic forces cause sound can help make the sounds of aerial robots, drones, and fans not only more silent, but perhaps more pleasing, like the hum of a hummingbird.
Collapse
Affiliation(s)
- Ben J Hightower
- Mechanical Engineering, Stanford University, Stanford, United States
| | - Patrick Wa Wijnings
- Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | - Rivers Ingersoll
- Mechanical Engineering, Stanford University, Stanford, United States
| | - Diana D Chin
- Mechanical Engineering, Stanford University, Stanford, United States
| | - Jade Nguyen
- Mechanical Engineering, Stanford University, Stanford, United States
| | - Daniel Shorr
- Mechanical Engineering, Stanford University, Stanford, United States
| | - David Lentink
- Mechanical Engineering, Stanford University, Stanford, United States
| |
Collapse
|
8
|
Abstract
There are at least eight ways that wings potentially produce sound. Five mechanisms are aerodynamic sounds, created by airflow, and three are structural sound created by interactions of solid surfaces. Animal flight is low Mach (M), meaning all animals move at <30% of the speed of sound. Thus in aerodynamic mechanisms the effects of air compressibility can be ignored, except in mechanism #1. Mechanism #1 is trapped air, in which air approaches or exceeds Mach 1 as it escapes a constriction. This mechanism is hypothetical but likely. #2 is Gutin sound, the aerodynamic reaction to lift and drag. This mechanism is ubiquitous in flight, and generates low frequency sound such as the humming of hummingbirds or insect wing tones. #3 is turbulence-generated atonal whooshing sounds, which are also widespread in animal flight. #4 are whistles, tonal sounds generated by geometry-induced flow feedback. This mechanism is hypothetical. #5 is aeroelastic flutter, sound generated by elasticity-induced feedback that is usually but not always tonal. This is widespread in birds (feathers are predisposed to flutter) but apparently not bats or insects. Mechanism #6 is rubbing sound (including stridulation), created when bird feathers or insect wings slide past each other. Atonal rubbing sounds are widespread in bird flight and insects; tonal stridulation is widespread in insects. #7 is percussion, created when two stiff elements collide and vibrate, and is present in some birds and insects. Mechanism #8 are tymbals and other bistable conformations. These are stiff elements that snap back and forth between two conformations, producing impulsive, atonal sound. Tymbals are widespread in insects but not birds or bats; insect cuticle appears predisposed to form tymbals. There are few examples of bat wing sounds: are bats intrinsically quiet, or just under-studied? These mechanisms, especially Gutin sound, whooshes, and rubbing (#2, #3, and #6) are prominent cues in ordinary flight of all flying animals, and are the "acoustic substrate" available to be converted from an adventitious sound (cue) into a communication signal. For instance, wing sounds have many times evolved into signals that are incorporated into courtship displays. Conversely, these are the sounds selected to be suppressed if quiet flight is selected for. The physical mechanisms that underlie animal sounds provide context for understanding the ways in which signals and cues may evolve.
Collapse
Affiliation(s)
- Christopher J Clark
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
9
|
Brady PC. Three-dimensional measurements of animal paths using handheld unconstrained GoPro cameras and VSLAM software. BIOINSPIRATION & BIOMIMETICS 2021; 16:026022. [PMID: 33540397 DOI: 10.1088/1748-3190/abe346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
I present the system PATMOS (paths and tessellated meshes from ORB_SLAM2) for measuring three-dimensional paths of animalsin situusing two handheld GoPro cameras and a small spatial reference object. Animal paths were triangulated from mobile camera positions obtained from a modified version of ORB_SLAM2, an open-source visual simultaneous localization and mapping software package. In addition to path calculation, this process provided a virtual three-dimensional surface approximation to the environment from which path to environment distances can be quantified. PATMOS can also fit a tranquil water's surface to an analytic plane if there are a sufficient number of visible objects intersecting the water's surface and can track objects over the water's surfaces with a single camera by measuring the object with its reflection. This technology was highly portable, could follow moving animals, and gave comparable spatial and temporal resolutions to fixed camera systems that use commercial cameras. An investigation of falling objects yielded a gravitational constant measurement of 978 ± 40 cm s-2. I demonstrated PATMOS's utility in terrestrial and aquatic environments by quantifying dragonfly flight characteristics and the inter-spatial distances between substrate and damselfish.
Collapse
Affiliation(s)
- Parrish C Brady
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
10
|
|
11
|
Rivas M, Medina J, Santiago-Pérez AL, Contreras-Martinez S, Rosas-Espinoza VC. Notes on the Distribution and The Lekking and Nesting Behaviors of the Mexican Hermit (Phaethornis mexicanus griseoventer) in West-Central Mexico. WEST N AM NATURALIST 2020. [DOI: 10.3398/064.080.0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Mónica Rivas
- Proyecto Nebulosa, Jardín Botánico Haravéri, La Estancia de Landeros, camino a Las Guacas km 8.5, San Sebastián del Oeste, Jalisco, C.P. 46995, México
| | - Jeshael Medina
- Proyecto Nebulosa, Jardín Botánico Haravéri, La Estancia de Landeros, camino a Las Guacas km 8.5, San Sebastián del Oeste, Jalisco, C.P. 46995, México
| | - Ana Luisa Santiago-Pérez
- Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Camino Ing. Ramón Padilla Sánchez No. 2100, Nextipac, Zapopan, Jalisco, C.P. 45200, México
| | - Sarahy Contreras-Martinez
- Universidad de Guadalajara, Centro Universitario de la Costa Sur, Ave. Independencia Nacional 151, Autlán de Navarro, Jalisco, C.P. 48900 México
| | - Verónica Carolina Rosas-Espinoza
- Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Camino Ing. Ramón Padilla Sánchez No. 2100, Nextipac, Zapopan, Jalisco, C.P. 45200, México
| |
Collapse
|
12
|
Boonman A, Yovel Y, Eitan O. Wing-Beat Frequency and Its Acoustics in Birds and Bats. Integr Comp Biol 2020; 60:1080-1090. [PMID: 32573685 DOI: 10.1093/icb/icaa085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animal flight noise can serve as an inspiration to engineering solutions to wind-noise problems in planes or wind turbines. Here we investigate the acoustics of wingbeats in birds and bats by co-registering wing-movement in natural flight with acoustic noise. To understand the relationships between wing movement and acoustics, we conducted additional acoustic measurements of single moving wings and other moving surfaces with accurately tracked motion paths. We found a correlation between wing-surface area and the sound pressure level of wingbeats; with bats tending to produce lower levels than birds. Measuring moving wings in isolation showed that a downstroke toward a microphone causes negative sound pressure that flips back into positive pressure at the reversal to the upstroke. The flip back to positive pressure is unrelated to the action of the upstroke, but occurs when the downward motion is halted. If the microphone is positioned above the downward wingbeat, then sound pressure instead quickly rises during the downward motion of the wing. The phase pattern of the impulse created by the wingbeat varies systematically with recording-angle. The curvature of the wing appears to be a determinant of the average frequency of the acoustic impulse. Our findings can be used to predict the acoustics of smaller flying animals where repetition pitch of similar underlying impulses, repeated at much higher wingbeat-rates become dominant.
Collapse
Affiliation(s)
- Arjan Boonman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ofri Eitan
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
13
|
Unisexual reproduction promotes competition for mating partners in the global human fungal pathogen Cryptococcus deneoformans. PLoS Genet 2019; 15:e1008394. [PMID: 31536509 PMCID: PMC6772093 DOI: 10.1371/journal.pgen.1008394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/01/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
Courtship is pivotal for successful mating. However, courtship is challenging for the Cryptococcus neoformans species complex, comprised of opportunistic fungal pathogens, as the majority of isolates are α mating type. In the absence of mating partners of the opposite mating type, C. deneoformans can undergo unisexual reproduction, during which a yeast-to-hyphal morphological transition occurs. Hyphal growth during unisexual reproduction is a quantitative trait, which reflects a strain's ability to undergo unisexual reproduction. In this study, we determined whether unisexual reproduction confers an ecological benefit by promoting foraging for mating partners. Through competitive mating assays using strains with different abilities to produce hyphae, we showed that unisexual reproduction potential did not enhance competition for mating partners of the same mating type, but when cells of the opposite mating type were present, cells with enhanced hyphal growth were more competitive for mating partners of either the same or opposite mating type. Enhanced mating competition was also observed in a strain with increased hyphal production that lacks the mating repressor gene GPA3, which contributes to the pheromone response. Hyphal growth in unisexual strains also enables contact between adjacent colonies and enhances mating efficiency during mating confrontation assays. The pheromone response pathway activation positively correlated with unisexual reproduction hyphal growth during bisexual mating and exogenous pheromone promoted bisexual cell fusion. Despite the benefit in competing for mating partners, unisexual reproduction conferred a fitness cost. Taken together, these findings suggest C. deneoformans employs hyphal growth to facilitate contact between colonies at long distances and utilizes pheromone sensing to enhance mating competition.
Collapse
|
14
|
Hogan BG, Stoddard MC. Synchronization of speed, sound and iridescent color in a hummingbird aerial courtship dive. Nat Commun 2018; 9:5260. [PMID: 30563977 PMCID: PMC6299134 DOI: 10.1038/s41467-018-07562-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
Many animal signals are complex, often combining multimodal components with dynamic motion. To understand the function and evolution of these displays, it is vital to appreciate their spatiotemporal organization. Male broad-tailed hummingbirds (Selasphorus platycercus) perform dramatic U-shaped courtship dives over females, appearing to combine rapid movement and dive-specific mechanical noises with visual signals from their iridescent gorgets. To understand how motion, sound and color interact in these spectacular displays, we obtained video and audio recordings of dives performed by wild hummingbirds. We then applied a multi-angle imaging technique to estimate how a female would perceive the male's iridescent gorget throughout the dive. We show that the key physical, acoustic and visual aspects of the dive are remarkably synchronized-all occurring within 300 milliseconds. Our results highlight the critical importance of accounting for motion and orientation when investigating animal displays: speed and trajectory affect how multisensory signals are produced and perceived.
Collapse
Affiliation(s)
- Benedict G Hogan
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.,Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Mary Caswell Stoddard
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA. .,Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA.
| |
Collapse
|
15
|
Clark CJ, Mistick EA. Kinematic control of male Allen's hummingbird wing trill over a range of flight speeds. ACTA ACUST UNITED AC 2018; 221:jeb.173625. [PMID: 29776995 DOI: 10.1242/jeb.173625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/15/2018] [Indexed: 11/20/2022]
Abstract
Wing trills are pulsed sounds produced by modified wing feathers at one or more specific points in time during a wingbeat. Male Allen's hummingbirds (Selasphorus sasin) produce a sexually dimorphic 9 kHz wing trill in flight. Here, we investigated the kinematic basis for trill production. The wingtip velocity hypothesis posits that trill production is modulated by the airspeed of the wingtip at some point during the wingbeat, whereas the wing rotation hypothesis posits that trill production is instead modulated by wing rotation kinematics. To test these hypotheses, we flew six male Allen's hummingbirds in an open-jet wind tunnel at flight speeds of 0, 3, 6, 9, 12 and 14 m s-1, and recorded their flight with two 'acoustic cameras' placed below and behind, or below and lateral to the flying bird. The acoustic cameras are phased arrays of 40 microphones that used beamforming to spatially locate sound sources within a camera image. Trill sound pressure level (SPL) exhibited a U-shaped relationship with flight speed in all three camera positions. SPL was greatest perpendicular to the stroke plane. Acoustic camera videos suggest that the trill is produced during supination. The trill was up to 20 dB louder during maneuvers than it was during steady-state flight in the wind tunnel, across all airspeeds tested. These data provide partial support for the wing rotation hypothesis. Altered wing rotation kinematics could allow male Allen's hummingbirds to modulate trill production in social contexts such as courtship displays.
Collapse
Affiliation(s)
- Christopher J Clark
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, CA 92521, USA
| | - Emily A Mistick
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, CA 92521, USA.,Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
16
|
Dive-bombing hummingbirds add a twist to impress mates. Nature 2018. [DOI: 10.1038/d41586-018-04487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|