1
|
Rocher C, Vernale A, Fierro‐Constaín L, Séjourné N, Chenesseau S, Marschal C, Issartel J, Le Goff E, Stroebel D, Jouvion J, Dutilleul M, Matthews C, Marschal F, Brouilly N, Massey‐Harroche D, Schenkelaars Q, Ereskovsky A, Le Bivic A, Renard E, Borchiellini C. The Buds of Oscarella lobularis (Porifera, Homoscleromorpha): A New Convenient Model for Sponge Cell and Evolutionary Developmental Biology. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:503-528. [PMID: 39364688 PMCID: PMC11587685 DOI: 10.1002/jez.b.23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 10/05/2024]
Abstract
The comparative study of the four non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera) provides insights into the origin of bilaterian traits. To complete our knowledge of the cell biology and development of these animals, additional non-bilaterian models are needed. Given the developmental, histological, ecological, and genomic differences between the four sponge classes (Demospongiae, Calcarea, Homoscleromorpha, and Hexactinellida), we have been developing the Oscarella lobularis (Porifera, class Homoscleromorpha) model over the past 15 years. Here, we report a new step forward by inducing, producing, and maintaining in vitro thousands of clonal buds that now make possible various downstream applications. This study provides a full description of bud morphology, physiology, cells and tissues, from their formation to their development into juveniles, using adapted cell staining protocols. In addition, we show that buds have outstanding capabilities of regeneration after being injured and of re-epithelization after complete cell dissociation. Altogether, Oscarella buds constitute a relevant all-in-one sponge model to access a large set of biological processes, including somatic morphogenesis, epithelial morphogenesis, cell fate, body axes formation, nutrition, contraction, ciliary beating, and respiration.
Collapse
Grants
- This work was funded by the Centre National de la recherche Scientifique (CNRS, UMR7263 and UMR7288) : project for international scientific cooperation (PICS) STraS involving CR, AE, SC, ER, CB, ELG, ALB, DMH, CM, AV), and also by the Aix-Marseille University and the A*MIDEX foundation project (ANR-11-IDEX-0001-02 to CB, ER, ALB, CR, NS, SC, ChM, AE;
- AMX-18-INT-021 to CB, ER, ALB, CR, DML, NB, CM); as well as the National research agency (ANR) : ANR-21-CE13-0013-02 to ALB, DML, CB, ER, CR, CM, SC and ANR-22-CE13-0026 to DS, JJ, ER, CB, QS, CR, CM, SC); ALB, DMH and NB are supported by the LabEx INFORM (ANR-11-LABX-0054) both funded by the «Investissements d'Avenir » French Government program, managed by the French National Research Agency (ANR).
- The DB RAS government basic research program no. 0088-2021-0009 (TEM studies) to AE. AE also acknowledge the Saint-Petersburg State University (Saint-Petersburg, Russia) and the Koltzov Institute of Developmental Biology of Russian Academy of Sciences (Moscow, Russia) for their technical and financial support to perform some of the experiments.
- The region Sud/PACA and Aix-Marseille University are also acknowledged for funding PhD fellowships of Laura Fierro-Constaín and Amélie Vernale, respectively. The light and electron microscopy experiments were performed at the PiCSL-FBI core facility (IBDM, AMU-Marseille), a member of the France-BioImaging National Research Infrastructure (ANR-10-INBS-04).
- This work was funded by the Centre National de la recherche Scientifique (CNRS, UMR7263 and UMR7288) : project for international scientific cooperation (PICS) STraS involving CR, AE, SC, ER, CB, ELG, ALB, DMH, CM, AV), and also by the Aix-Marseille University and the A*MIDEX foundation project (ANR-11-IDEX-0001-02 to CB, ER, ALB, CR, NS, SC, ChM, AE; AMX-18-INT-021 to CB, ER, ALB, CR, DML, NB, CM); as well as the National research agency (ANR) : ANR-21-CE13-0013-02 to ALB, DML, CB, ER, CR, CM, SC and ANR-22-CE13-0026 to DS, JJ, ER, CB, QS, CR, CM, SC); ALB, DMH and NB are supported by the LabEx INFORM (ANR-11-LABX-0054) both funded by the «Investissements d'Avenir » French Government program, managed by the French National Research Agency (ANR). The DB RAS government basic research program no. 0088-2021-0009 (TEM studies) to AE. AE also acknowledge the Saint-Petersburg State University (Saint-Petersburg, Russia) and the Koltzov Institute of Developmental Biology of Russian Academy of Sciences (Moscow, Russia) for their technical and financial support to perform some of the experiments. The region Sud/PACA and Aix-Marseille University are also acknowledged for funding PhD fellowships of Laura Fierro-Constaín and Amélie Vernale, respectively. The light and electron microscopy experiments were performed at the PiCSL-FBI core facility (IBDM, AMU-Marseille), a member of the France-BioImaging National Research Infrastructure (ANR-10-INBS-04).
Collapse
Affiliation(s)
- Caroline Rocher
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | - Amélie Vernale
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
- Aix Marseille UniversityMarseilleFrance
| | | | - Nina Séjourné
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | | | - Julien Issartel
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | - Emilie Le Goff
- ISEM, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | - David Stroebel
- ENS, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS)Université PSLParisFrance
| | - Julie Jouvion
- ENS, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS)Université PSLParisFrance
| | - Morgan Dutilleul
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | - Florent Marschal
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | | | | | | | | | - Emmanuelle Renard
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
- Aix Marseille UniversityMarseilleFrance
| | | |
Collapse
|
2
|
Kraus EA, Mellenthin LE, Siwiecki SA, Song D, Yan J, Janmey PA, Sweeney AM. Rheology of marine sponges reveals anisotropic mechanics and tuned dynamics. J R Soc Interface 2022; 19:20220476. [PMID: 36259170 PMCID: PMC9579767 DOI: 10.1098/rsif.2022.0476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023] Open
Abstract
Sponges are animals that inhabit many aquatic environments while filtering small particles and ejecting metabolic wastes. They are composed of cells in a bulk extracellular matrix, often with an embedded scaffolding of stiff, siliceous spicules. We hypothesize that the mechanical response of this heterogeneous tissue to hydrodynamic flow influences cell proliferation in a manner that generates the body of a sponge. Towards a more complete picture of the emergence of sponge morphology, we dissected a set of species and subjected discs of living tissue to physiological shear and uniaxial deformations on a rheometer. Various species exhibited rheological properties such as anisotropic elasticity, shear softening and compression stiffening, negative normal stress, and non-monotonic dissipation as a function of both shear strain and frequency. Erect sponges possessed aligned, spicule-reinforced fibres which endowed three times greater stiffness axially compared with orthogonally. By contrast, tissue taken from shorter sponges was more isotropic but time-dependent, suggesting higher flow sensitivity in these compared with erect forms. We explore ecological and physiological implications of our results and speculate about flow-induced mechanical signalling in sponge cells.
Collapse
Affiliation(s)
- Emile A. Kraus
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren E. Mellenthin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Sara A. Siwiecki
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dawei Song
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Paul A. Janmey
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison M. Sweeney
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Deppisch P, Helfrich-Förster C, Senthilan PR. The Gain and Loss of Cryptochrome/Photolyase Family Members during Evolution. Genes (Basel) 2022; 13:1613. [PMID: 36140781 PMCID: PMC9498864 DOI: 10.3390/genes13091613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
The cryptochrome/photolyase (CRY/PL) family represents an ancient group of proteins fulfilling two fundamental functions. While photolyases repair UV-induced DNA damages, cryptochromes mainly influence the circadian clock. In this study, we took advantage of the large number of already sequenced and annotated genes available in databases and systematically searched for the protein sequences of CRY/PL family members in all taxonomic groups primarily focusing on metazoans and limiting the number of species per taxonomic order to five. Using BLASTP searches and subsequent phylogenetic tree and motif analyses, we identified five distinct photolyases (CPDI, CPDII, CPDIII, 6-4 photolyase, and the plant photolyase PPL) and six cryptochrome subfamilies (DASH-CRY, mammalian-type MCRY, Drosophila-type DCRY, cnidarian-specific ACRY, plant-specific PCRY, and the putative magnetoreceptor CRY4. Manually assigning the CRY/PL subfamilies to the species studied, we have noted that over evolutionary history, an initial increase of various CRY/PL subfamilies was followed by a decrease and specialization. Thus, in more primitive organisms (e.g., bacteria, archaea, simple eukaryotes, and in basal metazoans), we find relatively few CRY/PL members. As species become more evolved (e.g., cnidarians, mollusks, echinoderms, etc.), the CRY/PL repertoire also increases, whereas it appears to decrease again in more recent organisms (humans, fruit flies, etc.). Moreover, our study indicates that all cryptochromes, although largely active in the circadian clock, arose independently from different photolyases, explaining their different modes of action.
Collapse
Affiliation(s)
| | | | - Pingkalai R. Senthilan
- Neurobiology & Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074 Wurzburg, Germany
| |
Collapse
|
4
|
Saleh F, Ma X, Guenser P, Mángano MG, Buatois LA, Antcliffe JB. Probability-based preservational variations within the early Cambrian Chengjiang biota (China). PeerJ 2022; 10:e13869. [PMID: 36032952 PMCID: PMC9415357 DOI: 10.7717/peerj.13869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
The Chengjiang biota (Yunnan Province, China) is a treasure trove of soft-bodied animal fossils from the earliest stages of the Cambrian explosion. The mechanisms contributing to its unique preservation, known as the Burgess Shale-type preservation, are well understood. However, little is known about the preservation differences between various animal groups within this biota. This study compares tissue-occurrence data of 11 major animal groups in the Chengjiang biota using a probabilistic methodology. The fossil-based data from this study is compared to previous decay experiments. This shows that all groups are not equally preserved with some higher taxa more likely to preserve soft tissues than others. These differences in fossil preservation between taxa can be explained by the interaction of biological and environmental characteristics. A bias also results from differential taxonomic recognition, as some taxa are easily recognized from even poorly preserved fragments while other specimens are difficult to assign to higher taxa even with exquisite preservation.
Collapse
Affiliation(s)
- Farid Saleh
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China,Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming, China
| | - Xiaoya Ma
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China,Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming, China,Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Pauline Guenser
- University Bordeaux, CNRS, Bordeaux INP, EPOC, UMR5805, Pessac, France
| | - M. Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Luis A. Buatois
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
5
|
Klug C, Kerr J, Lee MSY, Cloutier R. A late-surviving stem-ctenophore from the Late Devonian of Miguasha (Canada). Sci Rep 2021; 11:19039. [PMID: 34561497 PMCID: PMC8463547 DOI: 10.1038/s41598-021-98362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/06/2021] [Indexed: 11/08/2022] Open
Abstract
Like other soft-bodied organisms, ctenophores (comb jellies) produce fossils only under exceptional taphonomic conditions. Here, we present the first record of a Late Devonian ctenophore from the Escuminac Formation from Miguasha in eastern Canada. Based on the 18-fold symmetry of this disc-shaped fossil, we assign it to the total-group Ctenophora. Our phylogenetic analyses suggest that the new taxon Daihuoides jakobvintheri gen. et sp. nov. falls near Cambrian stem ctenophores such as 'dinomischids' and 'scleroctenophorans'. Accordingly, Daihuoides is a Lazarus-taxon, which post-dates its older relatives by over 140 million years, and overlaps temporally with modern ctenophores, whose oldest representatives are known from the Early Devonian. Our analyses also indicate that the fossil record of ctenophores does not provide strong evidence for or against the phylogenomic hypothesis that ctenophores are sister to all other metazoans.
Collapse
Affiliation(s)
- Christian Klug
- Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006, Zurich, Switzerland
| | - Johanne Kerr
- Parc national de Miguasha, 231 Route de Miguasha Ouest, Nouvelle, QC, G0C 2E0, Canada
| | - Michael S Y Lee
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Earth Sciences Section, South Australian Museum, Adelaide, SA, Australia
| | - Richard Cloutier
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, QC, G5L 3A1, Canada.
| |
Collapse
|
6
|
Vernale A, Prünster MM, Marchianò F, Debost H, Brouilly N, Rocher C, Massey-Harroche D, Renard E, Le Bivic A, Habermann BH, Borchiellini C. Evolution of mechanisms controlling epithelial morphogenesis across animals: new insights from dissociation-reaggregation experiments in the sponge Oscarella lobularis. BMC Ecol Evol 2021; 21:160. [PMID: 34418961 PMCID: PMC8380372 DOI: 10.1186/s12862-021-01866-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The ancestral presence of epithelia in Metazoa is no longer debated. Porifera seem to be one of the best candidates to be the sister group to all other Metazoa. This makes them a key taxon to explore cell-adhesion evolution on animals. For this reason, several transcriptomic, genomic, histological, physiological and biochemical studies focused on sponge epithelia. Nevertheless, the complete and precise protein composition of cell-cell junctions and mechanisms that regulate epithelial morphogenetic processes still remain at the center of attention. RESULTS To get insights into the early evolution of epithelial morphogenesis, we focused on morphogenic characteristics of the homoscleromorph sponge Oscarella lobularis. Homoscleromorpha are a sponge class with a typical basement membrane and adhaerens-like junctions unknown in other sponge classes. We took advantage of the dynamic context provided by cell dissociation-reaggregation experiments to explore morphogenetic processes in epithelial cells in a non-bilaterian lineage by combining fluorescent and electron microscopy observations and RNA sequencing approaches at key time-points of the dissociation and reaggregation processes. CONCLUSIONS Our results show that part of the molecular toolkit involved in the loss and restoration of epithelial features such as cell-cell and cell-matrix adhesion is conserved between Homoscleromorpha and Bilateria, suggesting their common role in the last common ancestor of animals. In addition, sponge-specific genes are differently expressed during the dissociation and reaggregation processes, calling for future functional characterization of these genes.
Collapse
Affiliation(s)
- Amélie Vernale
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Maria Mandela Prünster
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France
| | - Fabio Marchianò
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France
| | - Henry Debost
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Nicolas Brouilly
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
| | - Dominique Massey-Harroche
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Emmanuelle Renard
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - André Le Bivic
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Bianca H Habermann
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France.
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France.
| | - Carole Borchiellini
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France.
| |
Collapse
|
7
|
Moroz LL, Romanova DY, Kohn AB. Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190762. [PMID: 33550949 PMCID: PMC7935107 DOI: 10.1098/rstb.2019.0762] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Transmitter signalling is the universal chemical language of any nervous system, but little is known about its early evolution. Here, we summarize data about the distribution and functions of neurotransmitter systems in basal metazoans as well as outline hypotheses of their origins. We explore the scenario that neurons arose from genetically different populations of secretory cells capable of volume chemical transmission and integration of behaviours without canonical synapses. The closest representation of this primordial organization is currently found in Placozoa, disk-like animals with the simplest known cell composition but complex behaviours. We propose that injury-related signalling was the evolutionary predecessor for integrative functions of early transmitters such as nitric oxide, ATP, protons, glutamate and small peptides. By contrast, acetylcholine, dopamine, noradrenaline, octopamine, serotonin and histamine were recruited as canonical neurotransmitters relatively later in animal evolution, only in bilaterians. Ligand-gated ion channels often preceded the establishment of novel neurotransmitter systems. Moreover, lineage-specific diversification of neurotransmitter receptors occurred in parallel within Cnidaria and several bilaterian lineages, including acoels. In summary, ancestral diversification of secretory signal molecules provides unique chemical microenvironments for behaviour-driven innovations that pave the way to complex brain functions and elementary cognition. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute and Whitney laboratory, University of Florida, 9505 Ocean shore Blvd, St Augustine, FL 32080, USA
| | - Daria Y. Romanova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of RAS, 5A Butlerova Street, Moscow 117485, Russia
| | - Andrea B. Kohn
- Department of Neuroscience, McKnight Brain Institute and Whitney laboratory, University of Florida, 9505 Ocean shore Blvd, St Augustine, FL 32080, USA
| |
Collapse
|
8
|
Hancy AD, Antcliffe JB. Anoxia can increase the rate of decay for cnidarian tissue: Using Actinia equina to understand the early fossil record. GEOBIOLOGY 2020; 18:167-184. [PMID: 31990129 DOI: 10.1111/gbi.12370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
An experimental decay methodology is developed for a cnidarian model organism to serve as a comparison to the many previous such studies on bilaterians. This allows an examination of inherent bias against the fossilisation of cnidarian tissue and their diagnostic characters, under what conditions these occur, and in what way. The decay sequence of Actinia equina was examined under a series of controlled conditions. These experiments show that cnidarian decay begins with an initial rupturing of the epidermis, followed by rapid loss of recognisable internal morphological characters. This suggests that bacteria work quicker on the epidermis than autolysis does on the internal anatomy. The data also show that diploblastic tissue is not universally decayed more slowly under anoxic or reducing conditions than under oxic conditions. Indeed, some cnidarian characters decay more rapidly under anoxic conditions than they do under oxic conditions. This suggests the decay pathways acting may be different to those affecting soft bilaterian tissue such as soft epidermis and internal organs. What is most important in the decay of soft polyp anatomy is the microbial community, which can be dominated by oxic or anoxic bacteria. Different Lagerstätte, even of the same type, will inevitably have subtle difference in their bacterial communities, which among other factors, could be a control on soft polyp preservation leading to either an absence of compelling soft anthozoans (Burgess Shale) or an astonishing abundance (Qingjiang biota).
Collapse
Affiliation(s)
- Anthony D Hancy
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Jonathan B Antcliffe
- Oxford University Museum of Natural History, Oxford, UK
- Institut des Sciences de la Terre, Bâtiment Géopolis, UNIL-Mouline, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|