1
|
Abstract
More than a century of research, of which JEB has published a substantial selection, has highlighted the rich diversity of animal eyes. From these studies have emerged numerous examples of visual systems that depart from our own familiar blueprint, a single pair of lateral cephalic eyes. It is now clear that such departures are common, widespread and highly diverse, reflecting a variety of different eye types, visual abilities and architectures. Many of these examples have been described as 'distributed' visual systems, but this includes several fundamentally different systems. Here, I re-examine this term, suggest a new framework within which to evaluate visual system distribution in both spatial and functional senses, and propose a roadmap for future work. The various architectures covered by this term reflect three broad strategies that offer different opportunities and require different approaches for study: the duplication of functionally identical eyes, the expression of multiple, functionally distinct eye types in parallel and the use of dispersed photoreceptors to mediate visual behaviour without eyes. Within this context, I explore some of the possible implications of visual system architecture for how visual information is collected and integrated, which has remained conceptually challenging in systems with a large degree of spatial and/or functional distribution. I highlight two areas that should be prioritised in future investigations: the whole-organism approach to behaviour and signal integration, and the evolution of visual system architecture across Metazoa. Recent advances have been made in both areas, through well-designed ethological experiments and the deployment of molecular tools.
Collapse
Affiliation(s)
- Lauren Sumner-Rooney
- Museum für Naturkunde, Leibniz Institute for Biodiversity and Evolution, Invalidenstrasse 43, 10115 Berlin, Germany
| |
Collapse
|
2
|
Brodrick E, Jékely G. Photobehaviours guided by simple photoreceptor systems. Anim Cogn 2023; 26:1817-1835. [PMID: 37650997 PMCID: PMC10770211 DOI: 10.1007/s10071-023-01818-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Light provides a widely abundant energy source and valuable sensory cue in nature. Most animals exposed to light have photoreceptor cells and in addition to eyes, there are many extraocular strategies for light sensing. Here, we review how these simpler forms of detecting light can mediate rapid behavioural responses in animals. Examples of these behaviours include photophobic (light avoidance) or scotophobic (shadow) responses, photokinesis, phototaxis and wavelength discrimination. We review the cells and response mechanisms in these forms of elementary light detection, focusing on aquatic invertebrates with some protist and terrestrial examples to illustrate the general principles. Light cues can be used very efficiently by these simple photosensitive systems to effectively guide animal behaviours without investment in complex and energetically expensive visual structures.
Collapse
Affiliation(s)
- Emelie Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Schweikert LE, Bagge LE, Naughton LF, Bolin JR, Wheeler BR, Grace MS, Bracken-Grissom HD, Johnsen S. Dynamic light filtering over dermal opsin as a sensory feedback system in fish color change. Nat Commun 2023; 14:4642. [PMID: 37607908 PMCID: PMC10444757 DOI: 10.1038/s41467-023-40166-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/14/2023] [Indexed: 08/24/2023] Open
Abstract
Dynamic color change has evolved multiple times, with a physiological basis that has been repeatedly linked to dermal photoreception via the study of excised skin preparations. Despite the widespread prevalence of dermal photoreception, both its physiology and its function in regulating color change remain poorly understood. By examining the morphology, physiology, and optics of dermal photoreception in hogfish (Lachnolaimus maximus), we describe a cellular mechanism in which chromatophore pigment activity (i.e., dispersion and aggregation) alters the transmitted light striking SWS1 receptors in the skin. When dispersed, chromatophore pigment selectively absorbs the short-wavelength light required to activate the skin's SWS1 opsin, which we localized to a morphologically specialized population of putative dermal photoreceptors. As SWS1 is nested beneath chromatophores and thus subject to light changes from pigment activity, one possible function of dermal photoreception in hogfish is to monitor chromatophores to detect information about color change performance. This framework of sensory feedback provides insight into the significance of dermal photoreception among color-changing animals.
Collapse
Affiliation(s)
- Lorian E Schweikert
- Institute of the Environment, Department of Biological Sciences, Florida International University, North Miami, FL, 33181, USA.
- Biology Department, Duke University, Durham, NC, 27708, USA.
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, 28403, USA.
| | - Laura E Bagge
- Torch Technologies, Shalimar, FL, 32579, USA
- Air Force Research Laboratory/RWTCA, Eglin Air Force Base, FL, 32542, USA
| | - Lydia F Naughton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, 28403, USA
| | - Jacob R Bolin
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, 28403, USA
| | | | - Michael S Grace
- College of Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Heather D Bracken-Grissom
- Institute of the Environment, Department of Biological Sciences, Florida International University, North Miami, FL, 33181, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Sönke Johnsen
- Biology Department, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
4
|
Garm A, Hamilton O, Glenner H, Irwin AR, Mah C. Eyes, Vision, and Bioluminescence in Deep-Sea Brisingid Sea Stars. THE BIOLOGICAL BULLETIN 2023; 245:33-44. [PMID: 38820289 DOI: 10.1086/729983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
AbstractSea stars are a major component of the megabenthos in most marine habitats, including those within the deep sea. Being radially symmetric, sea stars have sensory structures that are evenly distributed along the arms, with a compound eye located on each arm tip of most examined species. Surprisingly, eyes with a spatial resolution that rivals the highest acuity known among sea stars so far were recently found in Novodinia americana, a member of the deep-sea sea star order Brisingida. Here, we examined 21 species across 11 brisingid genera for the presence of eyes; where eyes were present, we used morphological characteristics to evaluate spatial resolution and sensitivity. This study found that eyes were present within 43% of the examined species. These brisingid eyes were relatively large compared to those of other deep-sea sea stars, with a high number of densely packed ommatidia. One of the examined species, Brisingaster robillardi, had more than 600 ommatidia per eye, which is the highest number of ommatidia found in any sea star eye so far. Combined, the results indicate that brisingid eyes are adapted for spatial resolution over sensitivity. Together with results showing that many brisingids are bioluminescent, this relatively high spatial resolution suggests that the group may use their eyes to support visually guided intraspecific communication based on bioluminescent signals. Phylogenetic analysis indicated that the common ancestor of brisingids had eyes (P = 0.72) and that eyes were lost once within the clade.
Collapse
|
5
|
Chappell DR, Speiser DI. Polarization sensitivity and decentralized visual processing in an animal with a distributed visual system. J Exp Biol 2023; 226:286798. [PMID: 36714995 DOI: 10.1242/jeb.244710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
The marine mollusc Acanthopleura granulata (Mollusca; Polyplacophora) has a distributed visual array composed of hundreds of small image-forming eyes embedded within its eight dorsal shell plates. As in other animals with distributed visual systems, we still have a poor understanding of the visual capabilities of A. granulata and we have yet to learn where and how it processes visual information. Using behavioral trials involving isoluminant looming visual stimuli, we found that A. granulata demonstrates spatial vision with an angular resolution of 6 deg. We also found that A. granulata responds to looming stimuli defined by contrasting angles of linear polarization. To learn where and how A. granulata processes visual information, we traced optic nerves using fluorescent lipophilic dyes. We found that the optic nerves innervate the underlying lateral neuropil, a neural tissue layer that circumnavigates the body. Adjacent optic nerves innervate the lateral neuropil with highly overlapping arborizations, suggesting it is the site of an integrated visuotopic map. Using immunohistochemistry, we found that the lateral neuropil of A. granulata is subdivided into two separate layers. In comparison, we found that a chiton with eyespots (Chiton tuberculatus) and two eyeless chitons (Ischnochiton papillosus and Chaetopleura apiculata) have lateral neuropil that is a singular circular layer without subdivision, findings consistent with previous work on chiton neuroanatomy. Overall, our results suggest that A. granulata effectuates its visually mediated behaviors using a unique processing scheme: it extracts spatial and polarization information using a distributed visual system, and then integrates and processes that information using decentralized neural circuits.
Collapse
Affiliation(s)
- Daniel R Chappell
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Daniel I Speiser
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
6
|
Audino JA, Adams DC, Serb JM. Variation in eye abundance among scallops reveals ontogenetic and evolutionary convergence associated with life habits. Evolution 2022; 76:1607-1618. [PMID: 35709485 DOI: 10.1111/evo.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 01/22/2023]
Abstract
Eyes are remarkable systems to investigate the complex interaction between ecological drivers and phenotypic outcomes. Some animals, such as scallops, have many eyes for visual perception, but to date, the evolution of multiple-eye systems remains obscure. For instance, it is unclear whether eye number changes over a lifetime or varies among species. Scallops are a suitable model group to investigate these questions considering the interspecific variation of adult size and ecological diversity. We tested whether eye abundance scales with body size among individuals and species and whether it varies with life habits. We performed comparative analyses, including a phylogenetic ANCOVA and evolutionary model comparisons, based on eye count and shell height (as a proxy of body size) across 31 scallop species. Our analyses reveal that patterns of increasing relationship with body size are not concordant among taxa and suggest ontogenetic convergence caused by similar ecologies. Accordingly, selective optima in eye numbers are associated with shifts in life habits. For instance, species with increased mobility have significantly more eyes than less mobile species. The convergent evolution of greater eye abundance in more mobile scallops likely indicates a visual improvement based on increased levels of oversampling of the surrounding environment.
Collapse
Affiliation(s)
- Jorge A Audino
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| | - Dean C Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| | - Jeanne M Serb
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
7
|
Nilsson DE. The Evolution of Visual Roles – Ancient Vision Versus Object Vision. Front Neuroanat 2022; 16:789375. [PMID: 35221931 PMCID: PMC8863595 DOI: 10.3389/fnana.2022.789375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Abstract
Just like other complex biological features, image vision (multi-pixel light sensing) did not evolve suddenly. Animal visual systems have a long prehistory of non-imaging light sensitivity. The first spatial vision was likely very crude with only few pixels, and evolved to improve orientation behaviors previously supported by single-channel directional photoreception. The origin of image vision was simply a switch from single to multiple spatial channels, which improved the behaviors for finding a suitable habitat and position itself within it. Orientation based on spatial vision obviously involves active guidance of behaviors but, by necessity, also assessment of habitat suitability and environmental conditions. These conditions are crucial for deciding when to forage, reproduce, seek shelter, rest, etc. When spatial resolution became good enough to see other animals and interact with them, a whole range of new visual roles emerged: pursuit, escape, communication and other interactions. All these new visual roles require entirely new types of visual processing. Objects needed to be separated from the background, identified and classified to make the correct choice of interaction. Object detection and identification can be used actively to guide behaviors but of course also to assess the over-all situation. Visual roles can thus be classified as either ancient non-object-based tasks, or object vision. Each of these two categories can also be further divided into active visual tasks and visual assessment tasks. This generates four major categories of vision into which I propose that all visual roles can be categorized.
Collapse
|
8
|
Chappell DR, Horan TM, Speiser DI. Panoramic spatial vision in the bay scallop Argopecten irradians. Proc Biol Sci 2021; 288:20211730. [PMID: 34753355 PMCID: PMC8580434 DOI: 10.1098/rspb.2021.1730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 11/12/2022] Open
Abstract
We have a growing understanding of the light-sensing organs and light-influenced behaviours of animals with distributed visual systems, but we have yet to learn how these animals convert visual input into behavioural output. It has been suggested they consolidate visual information early in their sensory-motor pathways, resulting in them being able to detect visual cues (spatial resolution) without being able to locate them (spatial vision). To explore how an animal with dozens of eyes processes visual information, we analysed the responses of the bay scallop Argopecten irradians to both static and rotating visual stimuli. We found A. irradians distinguish between static visual stimuli in different locations by directing their sensory tentacles towards them and were more likely to point their extended tentacles towards larger visual stimuli. We also found that scallops track rotating stimuli with individual tentacles and with rotating waves of tentacle extension. Our results show, to our knowledge for the first time that scallops have both spatial resolution and spatial vision, indicating their sensory-motor circuits include neural representations of their visual surroundings. Exploring a wide range of animals with distributed visual systems will help us learn the different ways non-cephalized animals convert sensory input into behavioural output.
Collapse
Affiliation(s)
- Daniel R. Chappell
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Tyler M. Horan
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Daniel I. Speiser
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
9
|
Revilla-i-Domingo R, Rajan VBV, Waldherr M, Prohaczka G, Musset H, Orel L, Gerrard E, Smolka M, Stockinger A, Farlik M, Lucas RJ, Raible F, Tessmar-Raible K. Characterization of cephalic and non-cephalic sensory cell types provides insight into joint photo- and mechanoreceptor evolution. eLife 2021; 10:e66144. [PMID: 34350831 PMCID: PMC8367381 DOI: 10.7554/elife.66144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Rhabdomeric opsins (r-opsins) are light sensors in cephalic eye photoreceptors, but also function in additional sensory organs. This has prompted questions on the evolutionary relationship of these cell types, and if ancient r-opsins were non-photosensory. A molecular profiling approach in the marine bristleworm Platynereis dumerilii revealed shared and distinct features of cephalic and non-cephalic r-opsin1-expressing cells. Non-cephalic cells possess a full set of phototransduction components, but also a mechanosensory signature. Prompted by the latter, we investigated Platynereis putative mechanotransducer and found that nompc and pkd2.1 co-expressed with r-opsin1 in TRE cells by HCR RNA-FISH. To further assess the role of r-Opsin1 in these cells, we studied its signaling properties and unraveled that r-Opsin1 is a Gαq-coupled blue light receptor. Profiling of cells from r-opsin1 mutants versus wild-types, and a comparison under different light conditions reveals that in the non-cephalic cells light - mediated by r-Opsin1 - adjusts the expression level of a calcium transporter relevant for auditory mechanosensation in vertebrates. We establish a deep-learning-based quantitative behavioral analysis for animal trunk movements and identify a light- and r-Opsin-1-dependent fine-tuning of the worm's undulatory movements in headless trunks, which are known to require mechanosensory feedback. Our results provide new data on peripheral cell types of likely light sensory/mechanosensory nature. These results point towards a concept in which such a multisensory cell type evolved to allow for fine-tuning of mechanosensation by light. This implies that light-independent mechanosensory roles of r-opsins may have evolved secondarily.
Collapse
Affiliation(s)
- Roger Revilla-i-Domingo
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform "Single-Cell Regulation of Stem Cells", University of Vienna, Vienna BioCenterViennaAustria
| | - Vinoth Babu Veedin Rajan
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Monika Waldherr
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Günther Prohaczka
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Hugo Musset
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Lukas Orel
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Elliot Gerrard
- Division of Neuroscience & Experimental Psychology, University of ManchesterManchesterUnited Kingdom
| | - Moritz Smolka
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of ViennaViennaAustria
| | - Alexander Stockinger
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform "Single-Cell Regulation of Stem Cells", University of Vienna, Vienna BioCenterViennaAustria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of Dermatology, Medical University of ViennaViennaAustria
| | - Robert J Lucas
- Division of Neuroscience & Experimental Psychology, University of ManchesterManchesterUnited Kingdom
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform "Single-Cell Regulation of Stem Cells", University of Vienna, Vienna BioCenterViennaAustria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| |
Collapse
|
10
|
Ljungholm M, Nilsson DE. Modelling the visual world of a velvet worm. PLoS Comput Biol 2021; 17:e1008808. [PMID: 34319993 PMCID: PMC8363015 DOI: 10.1371/journal.pcbi.1008808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/13/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022] Open
Abstract
In many animal phyla, eyes are small and provide only low-resolution vision for general orientation in the environment. Because these primitive eyes rarely have a defined image plane, traditional visual-optics principles cannot be applied. To assess the functional capacity of such eyes we have developed modelling principles based on ray tracing in 3D reconstructions of eye morphology, where refraction on the way to the photoreceptors and absorption in the photopigment are calculated incrementally for ray bundles from all angles within the visual field. From the ray tracing, we calculate the complete angular acceptance function of each photoreceptor in the eye, revealing the visual acuity for all parts of the visual field. We then use this information to generate visual filters that can be applied to high resolution images or videos to convert them to accurate representations of the spatial information seen by the animal. The method is here applied to the 0.1 mm eyes of the velvet worm Euperipatoides rowelli (Onychophora). These eyes of these terrestrial invertebrates consist of a curved cornea covering an irregular but optically homogeneous lens directly joining a retina packed with photoreceptive rhabdoms. 3D reconstruction from histological sections revealed an asymmetric eye, where the retina is deeper in the forward-pointing direction. The calculated visual acuity also reveals performance differences across the visual field, with a maximum acuity of about 0.11 cycles/deg in the forward direction despite laterally pointing eyes. The results agree with previous behavioural measurements of visual acuity, and suggest that velvet worm vision is adequate for orientation and positioning within the habitat.
Collapse
Affiliation(s)
- Mikael Ljungholm
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Dan-E. Nilsson
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Abstract
Every aspect of vision, from the opsin proteins to the eyes and the ways that they serve animal behavior, is incredibly diverse. It is only with an evolutionary perspective that this diversity can be understood and fully appreciated. In this review, I describe and explain the diversity at each level and try to convey an understanding of how the origin of the first opsin some 800 million years ago could initiate the avalanche that produced the astonishing diversity of eyes and vision that we see today. Despite the diversity, many types of photoreceptors, eyes, and visual roles have evolved multiple times independently in different animals, revealing a pattern of eye evolution strictly guided by functional constraints and driven by the evolution of gradually more demanding behaviors. I conclude the review by introducing a novel distinction between active and passive vision that points to uncharted territories in vision research. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Dan-E Nilsson
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden;
| |
Collapse
|
12
|
Sumner-Rooney L, Kirwan JD, Lüter C, Ullrich-Lüter E. Run and hide: visual performance in a brittle star. J Exp Biol 2021; 224:jeb236653. [PMID: 34100540 PMCID: PMC8214828 DOI: 10.1242/jeb.236653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/12/2021] [Indexed: 11/24/2022]
Abstract
Spatial vision was recently reported in a brittle star, Ophiomastix wendtii, which lacks discrete eyes, but little is known about its visual ecology. Our aim was to better characterize the vision and visual ecology of this unusual visual system. We tested animal orientation relative to vertical bar stimuli at a range of angular widths and contrasts, to identify limits of angular and contrast detection. We also presented dynamic shadow stimuli, either looming towards or passing the animal overhead, to test for potential defensive responses. Finally, we presented animals lacking a single arm with a vertical bar stimulus known to elicit a response in intact animals. We found that O. wendtii orients to large (≥50 deg), high-contrast vertical bar stimuli, consistent with a shelter-seeking role and with photoreceptor acceptance angles estimated from morphology. We calculate poor optical sensitivity for individual photoreceptors, and predict dramatic oversampling for photoreceptor arrays. We also report responses to dark stimuli moving against a bright background - this is the first report of responses to moving stimuli in brittle stars and suggests additional defensive uses for vision in echinoderms. Finally, we found that animals missing a single arm orient less well to static stimuli, which requires further investigation.
Collapse
Affiliation(s)
- Lauren Sumner-Rooney
- Oxford University Museum of Natural History, University of Oxford, Parks Road, Oxford OX1 3PW, UK
| | - John D. Kirwan
- Stazione Zoologica Anton Dohrn, Via Francesco Caracciolo, 333, 80122 Naples, Italy
| | - Carsten Lüter
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Esther Ullrich-Lüter
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity, Invalidenstrasse 43, 10115 Berlin, Germany
| |
Collapse
|
13
|
Yaguchi J, Yaguchi S. Sea urchin larvae utilize light for regulating the pyloric opening. BMC Biol 2021; 19:64. [PMID: 33820528 PMCID: PMC8022552 DOI: 10.1186/s12915-021-00999-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Light is essential for various biological activities. In particular, visual information through eyes or eyespots is very important for most of animals, and thus, the functions and developmental mechanisms of visual systems have been well studied to date. In addition, light-dependent non-visual systems expressing photoreceptor Opsins have been used to study the effects of light on diverse animal behaviors. However, it remains unclear how light-dependent systems were acquired and diversified during deuterostome evolution due to an almost complete lack of knowledge on the light-response signaling pathway in Ambulacraria, one of the major groups of deuterostomes and a sister group of chordates. RESULTS Here, we show that sea urchin larvae utilize light for digestive tract activity. We found that photoirradiation of larvae induces pyloric opening even without addition of food stimuli. Micro-surgical and knockdown experiments revealed that this stimulating light is received and mediated by Go(/RGR)-Opsin (Opsin3.2 in sea urchin genomes) cells around the anterior neuroectoderm. Furthermore, we found that the anterior neuroectodermal serotoninergic neurons near Go-Opsin-expressing cells are essential for mediating light stimuli-induced nitric oxide (NO) release at the pylorus. Our results demonstrate that the light>Go-Opsin>serotonin>NO pathway functions in pyloric opening during larval stages. CONCLUSIONS The results shown here will lead us to understand how light-dependent systems of pyloric opening functioning via neurotransmitters were acquired and established during animal evolution. Based on the similarity of nervous system patterns and the gut proportions among Ambulacraria, we suggest the light>pyloric opening pathway may be conserved in the clade, although the light signaling pathway has so far not been reported in other members of the group. In light of brain-gut interactions previously found in vertebrates, we speculate that one primitive function of anterior neuroectodermal neurons (brain neurons) may have been to regulate the function of the digestive tract in the common ancestor of deuterostomes. Given that food consumption and nutrient absorption are essential for animals, the acquirement and development of brain-based sophisticated gut regulatory system might have been important for deuterostome evolution.
Collapse
Affiliation(s)
- Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan.
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, 332-0012, Japan.
| |
Collapse
|
14
|
Audino JA, Serb JM, Marian JEAR. Hard to get, easy to lose: Evolution of mantle photoreceptor organs in bivalves (Bivalvia, Pteriomorphia). Evolution 2020; 74:2105-2120. [PMID: 32716056 DOI: 10.1111/evo.14050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
Abstract
Morphologically diverse eyes have evolved numerous times, yet little is known about how eye gain and loss is related to photic environment. The pteriomorphian bivalves (e.g., oysters, scallops, and ark clams), with a remarkable range of photoreceptor organs and ecologies, are a suitable system to investigate the association between eye evolution and ecological shifts. The present phylogenetic framework was based on amino acid sequences from transcriptome datasets and nucleotide sequences of five additional genes. In total, 197 species comprising 22 families from all five pteriomorphian orders were examined, representing the greatest taxonomic sampling to date. Morphological data were acquired for 162 species and lifestyles were compiled from the literature for all 197 species. Photoreceptor organs occur in 11 families and have arisen exclusively in epifaunal lineages, that is, living above the substrate, at least five times independently. Models for trait evolution consistently recovered higher rates of loss over gain. Transitions to crevice-dwelling habit appear associated with convergent gains of eyespots in epifaunal lineages. Once photoreceptor organs have arisen, multiple losses occurred in lineages that shift to burrowing lifestyles and deep-sea habitats. The observed patterns suggest that eye evolution in pteriomorphians might have evolved in association with light-guided behaviors, such as phototaxis, body posture, and alarm responses.
Collapse
Affiliation(s)
- Jorge Alves Audino
- Department of Zoology, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Jeanne Marie Serb
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| | | |
Collapse
|
15
|
Visual Ecology: Now You See, Now You Don't. Curr Biol 2020; 30:R71-R73. [PMID: 31962079 DOI: 10.1016/j.cub.2019.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During the day, the brittle star Ophiocoma wendtii demonstrates spatial vision due to a distributed network of extraocular photoreceptors whose fields of view are restricted by chromatophores. At night, these chromatophores contract and O. wendtii loses spatial vision.
Collapse
|