1
|
Han C, Zhang Q, Li Y, Sun Y, Dong Y, Ge M, Li Z, Hu X, Liu B, Zhang X, Wang Z, Xu Q. Chromosome-level genome assembly and annotation of the cold-water species Ophiura sarsii. Sci Data 2024; 11:560. [PMID: 38816401 PMCID: PMC11139871 DOI: 10.1038/s41597-024-03412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
The cold-water species Ophiura sarsii, a brittle star, is a key echinoderm in the Arctic continental shelf region, highly sensitive to climate change. However, the absence of a high-quality genome has hindered a thorough understanding of its adaptive evolution. In this study, we reported the first chromosome-level genome assembly of O. sarsii. The genome assembly totalled 1.57 Gb, encompassing 19 chromosomes with a GC content of 37.11% and a scaffold N50 length of 78.03 Mb. The Benchmarking Universal Single-Copy Orthologs (BUSCO) assessment yielded a completeness estimate of 93.5% for this assembly. We predicted a total of 27,099 protein-coding genes, with 25,079 functionally annotated. The genome was comprised of 58.09% transposable elements. This chromosome-level genome of O. sarsii contributes to our understanding of the origin and evolution of marine organisms.
Collapse
Affiliation(s)
- Chen Han
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Qian Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Yixuan Li
- Faculty of Science, Hong Kong Baptist University, Hong Kong, 000000, China
| | - Yuyao Sun
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Yue Dong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Meiling Ge
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Zhong Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xuying Hu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Bing Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Zongling Wang
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| |
Collapse
|
2
|
Ausich WI. Rhombot and the dawn of paleobionics. Proc Natl Acad Sci U S A 2023; 120:e2314910120. [PMID: 37931113 PMCID: PMC10655567 DOI: 10.1073/pnas.2314910120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Affiliation(s)
- William I. Ausich
- Division of Earth History, School of Earth Sciences, The Ohio State University, Columbus, OH43210
| |
Collapse
|
3
|
Zhou S, Edie SM, Collins KS, Crouch NMA, Jablonski D. Cambrian origin but no early burst in functional disparity for Class Bivalvia. Biol Lett 2023; 19:20230157. [PMID: 37254520 PMCID: PMC10230185 DOI: 10.1098/rsbl.2023.0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Both the Cambrian explosion, more than half a billion years ago, and its Ordovician aftermath some 35 Myr later, are often framed as episodes of widespread ecological opportunity, but not all clades originating during this interval showed prolific rises in morphological or functional disparity. In a direct analysis of functional disparity, instead of the more commonly used proxy of morphological disparity, we find that ecological functions of Class Bivalvia arose concordantly with and even lagged behind taxonomic diversification, rather than the early-burst pattern expected for clades originating in supposedly open ecological landscapes. Unlike several other clades originating in the Cambrian explosion, the bivalves' belated acquisition of key anatomical novelties imposed a macroevolutionary lag, and even when those novelties evolved in the Early Ordovician, functional disparity never surpassed taxonomic diversity. Beyond this early period of animal evolution, the founding and subsequent diversification of new major clades and their functions might be expected to follow the pattern of the early bivalves-one where interactions between highly dynamic environmental and biotic landscapes and evolutionary contingencies need not promote prolific functional innovation.
Collapse
Affiliation(s)
- Sharon Zhou
- Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - Stewart M. Edie
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | | | - Nicholas M. A. Crouch
- Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - David Jablonski
- Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Nanglu K, Cole SR, Wright DF, Souto C. Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development. Biol Rev Camb Philos Soc 2023; 98:316-351. [PMID: 36257784 DOI: 10.1111/brv.12908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Deuterostomes are the major division of animal life which includes sea stars, acorn worms, and humans, among a wide variety of ecologically and morphologically disparate taxa. However, their early evolution is poorly understood, due in part to their disparity, which makes identifying commonalities difficult, as well as their relatively poor early fossil record. Here, we review the available morphological, palaeontological, developmental, and molecular data to establish a framework for exploring the origins of this important and enigmatic group. Recent fossil discoveries strongly support a vermiform ancestor to the group Hemichordata, and a fusiform active swimmer as ancestor to Chordata. The diverse and anatomically bewildering variety of forms among the early echinoderms show evidence of both bilateral and radial symmetry. We consider four characteristics most critical for understanding the form and function of the last common ancestor to Deuterostomia: Hox gene expression patterns, larval morphology, the capacity for biomineralization, and the morphology of the pharyngeal region. We posit a deuterostome last common ancestor with a similar antero-posterior gene regulatory system to that found in modern acorn worms and cephalochordates, a simple planktonic larval form, which was later elaborated in the ambulacrarian lineage, the ability to secrete calcium minerals in a limited fashion, and a pharyngeal respiratory region composed of simple pores. This animal was likely to be motile in adult form, as opposed to the sessile origins that have been historically suggested. Recent debates regarding deuterostome monophyly as well as the wide array of deuterostome-affiliated problematica further suggest the possibility that those features were not only present in the last common ancestor of Deuterostomia, but potentially in the ur-bilaterian. The morphology and development of the early deuterostomes, therefore, underpin some of the most significant questions in the study of metazoan evolution.
Collapse
Affiliation(s)
- Karma Nanglu
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Selina R Cole
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - David F Wright
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - Camilla Souto
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,School of Natural Sciences & Mathematics, Stockton University, 101 Vera King Farris Dr, Galloway, NJ, 08205, USA
| |
Collapse
|
5
|
Abstract
AbstractEvolvability is best addressed from a multi-level, macroevolutionary perspective through a comparative approach that tests for among-clade differences in phenotypic diversification in response to an opportunity, such as encountered after a mass extinction, entering a new adaptive zone, or entering a new geographic area. Analyzing the dynamics of clades under similar environmental conditions can (partially) factor out shared external drivers to recognize intrinsic differences in evolvability, aiming for a macroevolutionary analog of a common-garden experiment. Analyses will be most powerful when integrating neontological and paleontological data: determining differences among extant populations that can be hypothesized to generate large-scale, long-term contrasts in evolvability among clades; or observing large-scale differences among clade histories that can by hypothesized to reflect contrasts in genetics and development observed directly in extant populations. However, many comparative analyses can be informative on their own, as explored in this overview. Differences in clade-level evolvability can be visualized in diversity-disparity plots, which can quantify positive and negative departures of phenotypic productivity from stochastic expectations scaled to taxonomic diversification. Factors that evidently can promote evolvability include modularity—when selection aligns with modular structure or with morphological integration patterns; pronounced ontogenetic changes in morphology, as in allometry or multiphase life cycles; genome size; and a variety of evolutionary novelties, which can also be evaluated using macroevolutionary lags between the acquisition of a trait and phenotypic diversification, and dead-clade-walking patterns that may signal a loss of evolvability when extrinsic factors can be excluded. High speciation rates may indirectly foster phenotypic evolvability, and vice versa. Mechanisms are controversial, but clade evolvability may be higher in the Cambrian, and possibly early in the history of clades at other times; in the tropics; and, for marine organisms, in shallow-water disturbed habitats.
Collapse
|
6
|
Foley S, Vlasova A, Marcet-Houben M, Gabaldón T, Hinman VF. Evolutionary analyses of genes in Echinodermata offer insights towards the origin of metazoan phyla. Genomics 2022; 114:110431. [PMID: 35835427 PMCID: PMC9552553 DOI: 10.1016/j.ygeno.2022.110431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 05/10/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
Despite recent studies discussing the evolutionary impacts of gene duplications and losses among metazoans, the genomic basis for the evolution of phyla remains enigmatic. Here, we employ phylogenomic approaches to search for orthologous genes without known functions among echinoderms, and subsequently use them to guide the identification of their homologs across other metazoans. Our final set of 14 genes was obtained via a suite of homology prediction tools, gene expression data, gene ontology, and generating the Strongylocentrotus purpuratus phylome. The gene set was subjected to selection pressure analyses, which indicated that they are highly conserved and under negative selection. Their presence across broad taxonomic depths suggests that genes required to form a phylum are ancestral to that phylum. Therefore, rather than de novo gene genesis, we posit that evolutionary forces such as selection on existing genomic elements over large timescales may drive divergence and contribute to the emergence of phyla.
Collapse
Affiliation(s)
- Saoirse Foley
- Department of Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA; Echinobase #6-46, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, USA.
| | - Anna Vlasova
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA; Echinobase #6-46, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Martynov A, Lundin K, Korshunova T. Ontogeny, Phylotypic Periods, Paedomorphosis, and Ontogenetic Systematics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.806414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The key terms linking ontogeny and evolution are briefly reviewed. It is shown that their application and usage in the modern biology are often inconsistent and incorrectly understood even within the “evo-devo” field. For instance, the core modern reformulation that ontogeny not merely recapitulates, but produces phylogeny implies that ontogeny and phylogeny are closely interconnected. However, the vast modern phylogenetic and taxonomic fields largely omit ontogeny as a central concept. Instead, the common “clade-” and “tree-thinking” prevail, despite on the all achievements of the evo-devo. This is because the main conceptual basis of the modern biology is fundamentally ontogeny-free. In another words, in the Haeckel’s pair of “ontogeny and phylogeny,” ontogeny is still just a subsidiary for the evolutionary process (and hence, phylogeny), instead as in reality, its main driving force. The phylotypic periods is another important term of the evo-devo and represent a modern reformulation of Haeckel’s recapitulations and biogenetic law. However, surprisingly, this one of the most important biological evidence, based on the natural ontogenetic grounds, in the phylogenetic field that can be alleged as a “non-evolutionary concept.” All these observations clearly imply that a major revision of the main terms which are associated with the “ontogeny and phylogeny/evolution” field is urgently necessarily. Thus, “ontogenetic” is not just an endless addition to the term “systematics,” but instead a crucial term, without it neither systematics, nor biology have sense. To consistently employ the modern ontogenetic and epigenetic achievements, the concept of ontogenetic systematics is hereby refined. Ontogenetic systematics is not merely a “research program” but a key biological discipline which consistently links the enormous biological diversity with underlying fundamental process of ontogeny at both molecular and morphological levels. The paedomorphosis is another widespread ontogenetic-and-evolutionary process that is significantly underestimated or misinterpreted by the current phylogenetics and taxonomy. The term paedomorphosis is refined, as initially proposed to link ontogeny with evolution, whereas “neoteny” and “progenesis” are originally specific, narrow terms without evolutionary context, and should not be used as synonyms of paedomorphosis. Examples of application of the principles of ontogenetic systematics represented by such disparate animal groups as nudibranch molluscs and ophiuroid echinoderms clearly demonstrate that perseverance of the phylotypic periods is based not only on the classic examples in vertebrates, but it is a universal phenomenon in all organisms, including disparate animal phyla.
Collapse
|
8
|
Early echinoderms decouple form and function. Nat Ecol Evol 2022; 6:247-248. [PMID: 35145266 DOI: 10.1038/s41559-022-01664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Morphological volatility precedes ecological innovation in early echinoderms. Nat Ecol Evol 2022; 6:263-272. [PMID: 35145267 DOI: 10.1038/s41559-021-01656-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/20/2021] [Indexed: 11/08/2022]
Abstract
Origins of higher taxonomic groups entail dramatic and nearly simultaneous changes in morphology and ecological function, limiting our ability to disentangle the drivers of evolutionary diversification. Here we phylogenetically compare the anatomy and life habits of Cambrian-Ordovician echinoderms to test which facet better facilitates future success. Rates of morphological evolution are faster and involve more volatile trait changes, allowing morphological disparity to accrue faster and earlier in the Cambrian. However, persistent life-habit evolution throughout the early Palaeozoic, combined with iterative functional convergence within adaptive strategies, results in major expansion of ecospace and functional diversity. The interactions between tempo, divergence and convergence demonstrate not only that anatomical novelty precedes ecological success, but also that ecological innovation is constrained, even during a phylum's origin.
Collapse
|
10
|
Hunter AW, Ortega-Hernández J. A new somasteroid from the Fezouata Lagerstätte in Morocco and the Early Ordovician origin of Asterozoa. Biol Lett 2021; 17:20200809. [PMID: 33465330 PMCID: PMC7876607 DOI: 10.1098/rsbl.2020.0809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 11/12/2022] Open
Abstract
The somasteroids are Lower Palaeozoic star-shaped animals widely regarded as ancestors of Asterozoa, the group of echinoderms that includes brittle stars and starfish. However, the origin of asterozoans, the assembly of their distinctive body organization, and their relationships with other Cambrian and Ordovician echinoderms remain problematic owing to the difficulties of comparing the endoskeleton between disparate groups. Here, we describe the new somasteroid Cantabrigiaster fezouataensis, a primitive asterozoan from the Early Ordovician Fezouata Lagerstätte in Morocco. Cantabrigiaster shares with other somasteroids a unique endoskeletal arm organization and the presence of rod-like virgal ossicles that articulate with the ambulacrals, but differs from all other known asterozoans in the absence of adambulacral ossicles defining the arm margins, evoking parallels with non-asterozoan echinoderms. Developmentally informed Bayesian and parsimony phylogenetic analyses, which reflect the homology of the biserial ambulacral ossicles in Palaeozoic echinoderms according to the extraxial-axial theory, recover Cantabrigiaster as the earliest divergent stem-group asterozoan. Our results illuminate the ancestral morphology of Asterozoa, and clarify the affinities of problematic Ordovician Asterozoa. Bayesian inference and parsimony demonstrate that somasteroids represent a paraphyletic grade within stem- and crown-group Asterozoa, whereas stenuroids are paraphyletic within stem-group Ophiuroidea. Our results also offer potential insights on the evolutionary relationships between asterozoans, crinoids and potential Cambrian stem-group representatives.
Collapse
Affiliation(s)
- Aaron W. Hunter
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
- School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
11
|
|