1
|
Chu X, Yin Z, Yue P, Wang X, Yang Y, Sun J, Kong Z, Ren J, Liu X, Lu C, Zhao H, Li Y, Ding X. A novel method for extraction of high purity and high production Phytophthora sojae oospores. PLANT METHODS 2024; 20:70. [PMID: 38755668 PMCID: PMC11097473 DOI: 10.1186/s13007-024-01199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Phytophthora sojae, a soil-borne oomycete pathogen, has been a yield limiting factor for more than 60 years on soybean. The resurgence of P. sojae (Phytophthora sojae) is primarily ascribed to the durable oospores found in soil and remnants of the disease. P. sojae is capable of infesting at any growth periods of the soybean, and the succeed infestation of P. sojae is predominantly attributed to long-lived oospores present in soil. Comprehending the molecular mechanisms that drive oospores formation and their significance in infestation is the key for effective management of the disease. However, the existing challenges in isolating and extracting significant quantities of oospores pose limitations in investigating the sexual reproductive stages of P. sojae. RESULTS The study focused on optimizing and refining the culture conditions and extraction process of P. sojae, resulting in establishment of an efficient and the dependable method for extraction. Novel optimized approach was yielded greater quantities of high-purity P. sojae oospores than traditional methods. The novel approach exceeds the traditional approaches with respect to viability, survival ability, germination rates of new oospores and the pathogenicity of oospores in potting experiments. CONCLUSION The proposed method for extracting P. sojae oospores efficiently yielded a substantial quantity of highly pure, viable, and pathogenic oospores. The enhancements in oospores extraction techniques will promote the research on the sexual reproductive mechanisms of P. sojae and lead to the creation of innovative and effective approaches for managing oomycete diseases.
Collapse
Affiliation(s)
- Xiaomeng Chu
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Ziyi Yin
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Pengjie Yue
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Xinyu Wang
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Yue Yang
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Jiayi Sun
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Ziying Kong
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Jian Ren
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Xiaohan Liu
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Chongchong Lu
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Haipeng Zhao
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China.
| | - Yang Li
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China.
| | - Xinhua Ding
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China.
| |
Collapse
|
2
|
Masigol H, Grossart HP, Taheri SR, Mostowfizadeh-Ghalamfarsa R, Pourmoghaddam MJ, Bouket AC, Khodaparast SA. Utilization of Low Molecular Weight Carbon Sources by Fungi and Saprolegniales: Implications for Their Ecology and Taxonomy. Microorganisms 2023; 11:microorganisms11030782. [PMID: 36985355 PMCID: PMC10052706 DOI: 10.3390/microorganisms11030782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Contributions of fungal and oomycete communities to freshwater carbon cycling have received increasing attention in the past years. It has been shown that fungi and oomycetes constitute key players in the organic matter cycling of freshwater ecosystems. Therefore, studying their interactions with dissolved organic matter is crucial for understanding the aquatic carbon cycle. Therefore, we studied the consumption rates of various carbon sources using 17 fungal and 8 oomycete strains recovered from various freshwater ecosystems using EcoPlate™ and FF MicroPlate™ approaches. Furthermore, phylogenetic relationships between strains were determined via single and multigene phylogenetic analyses of the internal transcribed spacer regions. Our results indicated that the studied fungal and oomycete strains could be distinguished based on their carbon utilization patterns, as indicated by their phylogenetic distance. Thereby, some carbon sources had a higher discriminative strength to categorize the studied strains and thus were applied in a polyphasic approach. We concluded that studying the catabolic potential enables a better understanding of taxonomic relationships and ecological roles of fungal vs. oomycete strains.
Collapse
Affiliation(s)
- Hossein Masigol
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (H.M.); (S.R.T.)
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 4199613776, Iran; (M.J.P.); (S.A.K.)
| | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (H.M.); (S.R.T.)
- Institute for Biochemistry and Biology, Potsdam University, 14469 Potsdam, Germany
- Correspondence: ; Tel.: +49-(0)-3308269991
| | - Seyedeh Roksana Taheri
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (H.M.); (S.R.T.)
| | | | - Mohammad Javad Pourmoghaddam
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 4199613776, Iran; (M.J.P.); (S.A.K.)
| | - Ali Chenari Bouket
- East Azarbaijan Agricultural and Natural Resources Research and Education Centre, Plant Protection Research Department, Agricultural Research, Education and Extension Organization (AREEO), Tabriz 5355179854, Iran;
| | - Seyed Akbar Khodaparast
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 4199613776, Iran; (M.J.P.); (S.A.K.)
| |
Collapse
|
3
|
Zhang X, Fang J, Li C, Zhang J, Yang S, Deng B, Tu S. Design, Synthesis, and Fungicidal Activities of Indole-Modified Cinnamamide Derivatives. Chem Biodivers 2023; 20:e202200971. [PMID: 36418220 DOI: 10.1002/cbdv.202200971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Dimethomorph is a kind of cinnamamide fungicide with high fungicidal activities for oomycete diseases. The commercially available dimethomorph is a mixture of two isomers, in which (Z)-dimethomorph possessing higher activity and (E)-dimethomorph possessing lower activity. Herein, we reported the design, synthesis and fungicidal activities of a series of novel indole-modified cinnamamide derivatives, which used the indole group to 'fix' the cis-styrene group in (Z)-dimethomorph. The modification of the molecular structure of cinnamamide compounds could be beneficial to improve its practical application performance. Tested the fungicidal activities, it was found that compounds 8j, 9a, 9e, 9i and 9j showed excellent in vivo fungicidal activities (80-100 %) against Pseudoperonospora cubensis at a concentration of 100 mg L-1 , while dimethomorph and flumorph were noneffective. Moreover, parts of synthesized indole-modified cinnamamide derivatives 8 (8a, 8c, 8d and 8j) and 9 (9c and 9j) exhibited the same in vivo fungicidal activities against Phytophthora infestans with dimethomorph or flumorph at a concentration of 50 mg L-1 with 100 % inhibition. The biological assay results indicated that indole-modified cinnamamide derivatives have promising applications in the prevention and treatment of Phytophthora infestans.
Collapse
Affiliation(s)
- Xinwei Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jun Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chenjie Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jie Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shuwen Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Bin Deng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Song Tu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
4
|
Feng H, Wan C, Zhang Z, Chen H, Li Z, Jiang H, Yin M, Dong S, Dou D, Wang Y, Zheng X, Ye W. Specific interaction of an RNA-binding protein with the 3'-UTR of its target mRNA is critical to oomycete sexual reproduction. PLoS Pathog 2021; 17:e1010001. [PMID: 34648596 PMCID: PMC8547697 DOI: 10.1371/journal.ppat.1010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/26/2021] [Accepted: 10/03/2021] [Indexed: 01/17/2023] Open
Abstract
Sexual reproduction is an essential stage of the oomycete life cycle. However, the functions of critical regulators in this biological process remain unclear due to a lack of genome editing technologies and functional genomic studies in oomycetes. The notorious oomycete pathogen Pythium ultimum is responsible for a variety of diseases in a broad range of plant species. In this study, we revealed the mechanism through which PuM90, a stage-specific Puf family RNA-binding protein, regulates oospore formation in P. ultimum. We developed the first CRISPR/Cas9 system-mediated gene knockout and in situ complementation methods for Pythium. PuM90-knockout mutants were significantly defective in oospore formation, with empty oogonia or oospores larger in size with thinner oospore walls compared with the wild type. A tripartite recognition motif (TRM) in the Puf domain of PuM90 could specifically bind to a UGUACAUA motif in the mRNA 3′ untranslated region (UTR) of PuFLP, which encodes a flavodoxin-like protein, and thereby repress PuFLP mRNA level to facilitate oospore formation. Phenotypes similar to PuM90-knockout mutants were observed with overexpression of PuFLP, mutation of key amino acids in the TRM of PuM90, or mutation of the 3′-UTR binding site in PuFLP. The results demonstrated that a specific interaction of the RNA-binding protein PuM90 with the 3′-UTR of PuFLP mRNA at the post-transcriptional regulation level is critical for the sexual reproduction of P. ultimum. Oomycetes are a class of eukaryotic microorganisms with life cycles and growth habits similar to filamentous fungi, but are not true fungi. Although sexual reproduction, which produce oospores, is an essential stage of life cycle, the functions of critical regulators in this biological process remain unclear due to a lack of genome editing technologies and functional genomic studies in oomycetes. In this study, we developed the first CRISPR/Cas9 system-mediated gene knockout and in situ complementation methods for Pythium ultimum, a notorious oomycete pathogen that is responsible for a variety of diseases in a broad range of plant species. We further identified the Puf family RNA-binding protein PuM90 and the flavodoxin-like protein PuFLP as major functional factors involved in P. ultimum oospore formation. We proposed a new model that PuM90 acts as a stage-specific post-transcriptional regulator by specifically binding to the 3′-UTR of PuFLP and then repressing PuFLP mRNA level. This study describes new technologies and data that will help to elucidate sexual reproduction and post-transcriptional regulation in oomycetes.
Collapse
Affiliation(s)
- Hui Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Chuanxu Wan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Zhipeng Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Maozhu Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|