1
|
Waalkes MR, Leathery M, Peck M, Barr A, Cunill A, Hageter J, Horstick EJ. Light wavelength modulates search behavior performance in zebrafish. Sci Rep 2024; 14:16533. [PMID: 39019915 PMCID: PMC11255219 DOI: 10.1038/s41598-024-67262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Visual systems have evolved to discriminate between different wavelengths of light. The ability to perceive color, or specific light wavelengths, is important as color conveys crucial information about both biotic and abiotic features in the environment. Indeed, different wavelengths of light can drive distinct patterns of activity in the vertebrate brain, yet what remains incompletely understood is whether distinct wavelengths can invoke etiologically relevant behavioral changes. To address how specific wavelengths in the visible spectrum modulate behavioral performance, we use larval zebrafish and a stereotypic light-search behavior. Prior work has shown that the cessation of light triggers a transitional light-search behavior, which we use to interrogate wavelength-dependent behavioral modulation. Using 8 narrow spectrum light sources in the visible range, we demonstrate that all wavelengths induce motor parameters consistent with search behavior, yet the magnitude of search behavior is spectrum sensitive and the underlying motor parameters are modulated in distinct patterns across short, medium, and long wavelengths. However, our data also establishes that not all motor features of search are impacted by wavelength. To define how wavelength modulates search performance, we performed additional assays with alternative wavelengths, dual wavelengths, and variable intensity. Last, we also tested blind larvae to resolve which components of wavelength dependent behavioral changes potentially include signaling from non-retinal photoreception. These findings have important implications as organisms can be exposed to varying wavelengths in laboratory and natural settings and therefore impose unique behavioral outputs.
Collapse
Affiliation(s)
- Matthew R Waalkes
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Maegan Leathery
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Madeline Peck
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Allison Barr
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Alexander Cunill
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - John Hageter
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Eric J Horstick
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA.
- Department of Neuroscience Morgantown, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
2
|
Baden T. The vertebrate retina: a window into the evolution of computation in the brain. Curr Opin Behav Sci 2024; 57:None. [PMID: 38899158 PMCID: PMC11183302 DOI: 10.1016/j.cobeha.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 06/21/2024]
Abstract
Animal brains are probably the most complex computational machines on our planet, and like everything in biology, they are the product of evolution. Advances in developmental and palaeobiology have been expanding our general understanding of how nervous systems can change at a molecular and structural level. However, how these changes translate into altered function - that is, into 'computation' - remains comparatively sparsely explored. What, concretely, does it mean for neuronal computation when neurons change their morphology and connectivity, when new neurons appear or old ones disappear, or when transmitter systems are slowly modified over many generations? And how does evolution use these many possible knobs and dials to constantly tune computation to give rise to the amazing diversity in animal behaviours we see today? Addressing these major gaps of understanding benefits from choosing a suitable model system. Here, I present the vertebrate retina as one perhaps unusually promising candidate. The retina is ancient and displays highly conserved core organisational principles across the entire vertebrate lineage, alongside a myriad of adjustments across extant species that were shaped by the history of their visual ecology. Moreover, the computational logic of the retina is readily interrogated experimentally, and our existing understanding of retinal circuits in a handful of species can serve as an anchor when exploring the visual circuit adaptations across the entire vertebrate tree of life, from fish deep in the aphotic zone of the oceans to eagles soaring high up in the sky.
Collapse
|
3
|
Baden T. Ancestral photoreceptor diversity as the basis of visual behaviour. Nat Ecol Evol 2024; 8:374-386. [PMID: 38253752 DOI: 10.1038/s41559-023-02291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/10/2023] [Indexed: 01/24/2024]
Abstract
Animal colour vision is based on comparing signals from different photoreceptors. It is generally assumed that processing different spectral types of photoreceptor mainly serves colour vision. Here I propose instead that photoreceptors are parallel feature channels that differentially support visual-motor programmes like motion vision behaviours, prey capture and predator evasion. Colour vision may have emerged as a secondary benefit of these circuits, which originally helped aquatic vertebrates to visually navigate and segment their underwater world. Specifically, I suggest that ancestral vertebrate vision was built around three main systems, including a high-resolution general purpose greyscale system based on ancestral red cones and rods to mediate visual body stabilization and navigation, a high-sensitivity specialized foreground system based on ancestral ultraviolet cones to mediate threat detection and prey capture, and a net-suppressive system based on ancestral green and blue cones for regulating red/rod and ultraviolet circuits. This ancestral strategy probably still underpins vision today, and different vertebrate lineages have since adapted their original photoreceptor circuits to suit their diverse visual ecologies.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, UK.
| |
Collapse
|
4
|
Abstract
When vertebrates first conquered the land, they encountered a visual world that was radically distinct from that of their aquatic ancestors. Fish exploit the strong wavelength-dependent interactions of light with water by differentially feeding the signals from up to 5 spectral photoreceptor types into distinct behavioural programmes. However, above the water the same spectral rules do not apply, and this called for an update to visual circuit strategies. Early tetrapods soon evolved the double cone, a still poorly understood pair of new photoreceptors that brought the "ancestral terrestrial" complement from 5 to 7. Subsequent nonmammalian lineages differentially adapted this highly parallelised retinal input strategy for their diverse visual ecologies. By contrast, mammals shed most ancestral photoreceptors and converged on an input strategy that is exceptionally general. In eutherian mammals including in humans, parallelisation emerges gradually as the visual signal traverses the layers of the retina and into the brain.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, United Kingdom
| |
Collapse
|
5
|
Wang Z, Zhang J, Symvoulidis P, Guo W, Zhang L, Wilson MA, Boyden ES. Imaging the voltage of neurons distributed across entire brains of larval zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571964. [PMID: 38168290 PMCID: PMC10760087 DOI: 10.1101/2023.12.15.571964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Neurons interact in networks distributed throughout the brain. Although much effort has focused on whole-brain calcium imaging, recent advances in genetically encoded voltage indicators (GEVIs) raise the possibility of imaging voltage of neurons distributed across brains. To achieve this, a microscope must image at high volumetric rate and signal-to-noise ratio. We present a remote scanning light-sheet microscope capable of imaging GEVI-expressing neurons distributed throughout entire brains of larval zebrafish at a volumetric rate of 200.8 Hz. We measured voltage of ∼1/3 of the neurons of the brain, distributed throughout. We observed that neurons firing at different times during a sequence were located at different brain locations, for sequences elicited by a visual stimulus, which mapped onto locations throughout the optic tectum, as well as during stimulus-independent bursts, which mapped onto locations in the cerebellum and medulla. Whole-brain voltage imaging may open up frontiers in the fundamental operation of neural systems.
Collapse
|
6
|
Seifert M, Roberts PA, Kafetzis G, Osorio D, Baden T. Birds multiplex spectral and temporal visual information via retinal On- and Off-channels. Nat Commun 2023; 14:5308. [PMID: 37652912 PMCID: PMC10471707 DOI: 10.1038/s41467-023-41032-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/18/2023] [Indexed: 09/02/2023] Open
Abstract
In vertebrate vision, early retinal circuits divide incoming visual information into functionally opposite elementary signals: On and Off, transient and sustained, chromatic and achromatic. Together these signals can yield an efficient representation of the scene for transmission to the brain via the optic nerve. However, this long-standing interpretation of retinal function is based on mammals, and it is unclear whether this functional arrangement is common to all vertebrates. Here we show that male poultry chicks use a fundamentally different strategy to communicate information from the eye to the brain. Rather than using functionally opposite pairs of retinal output channels, chicks encode the polarity, timing, and spectral composition of visual stimuli in a highly correlated manner: fast achromatic information is encoded by Off-circuits, and slow chromatic information overwhelmingly by On-circuits. Moreover, most retinal output channels combine On- and Off-circuits to simultaneously encode, or multiplex, both achromatic and chromatic information. Our results from birds conform to evidence from fish, amphibians, and reptiles which retain the full ancestral complement of four spectral types of cone photoreceptors.
Collapse
Affiliation(s)
- Marvin Seifert
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Paul A Roberts
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Daniel Osorio
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, UK.
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Wang X, Roberts PA, Yoshimatsu T, Lagnado L, Baden T. Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina. Cell Rep 2023; 42:112055. [PMID: 36757846 DOI: 10.1016/j.celrep.2023.112055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
The vertebrate inner retina is driven by photoreceptors whose outputs are already pre-processed; in zebrafish, outer retinal circuits split "color" from "grayscale" information across four cone-photoreceptor types. It remains unclear how the inner retina processes incoming spectral information while also combining cone signals to shape grayscale functions. We address this question by imaging the light-driven responses of amacrine cells (ACs) and bipolar cells (BCs) in larval zebrafish in the presence and pharmacological absence of inner retinal inhibition. We find that ACs enhance opponency in some bipolar cells while at the same time suppressing pre-existing opponency in others, so that, depending on the retinal region, the net change in the number of color-opponent units is essentially zero. To achieve this "dynamic balance," ACs counteract intrinsic color opponency of BCs via the On channel. Consistent with these observations, Off-stratifying ACs are exclusively achromatic, while all color-opponent ACs stratify in the On sublamina.
Collapse
Affiliation(s)
- Xinwei Wang
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| | - Paul A Roberts
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Takeshi Yoshimatsu
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Leon Lagnado
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| | - Tom Baden
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK; Institute of Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Zhu SI, Goodhill GJ. From perception to behavior: The neural circuits underlying prey hunting in larval zebrafish. Front Neural Circuits 2023; 17:1087993. [PMID: 36817645 PMCID: PMC9928868 DOI: 10.3389/fncir.2023.1087993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
A key challenge for neural systems is to extract relevant information from the environment and make appropriate behavioral responses. The larval zebrafish offers an exciting opportunity for studying these sensing processes and sensory-motor transformations. Prey hunting is an instinctual behavior of zebrafish that requires the brain to extract and combine different attributes of the sensory input and form appropriate motor outputs. Due to its small size and transparency the larval zebrafish brain allows optical recording of whole-brain activity to reveal the neural mechanisms involved in prey hunting and capture. In this review we discuss how the larval zebrafish brain processes visual information to identify and locate prey, the neural circuits governing the generation of motor commands in response to prey, how hunting behavior can be modulated by internal states and experience, and some outstanding questions for the field.
Collapse
Affiliation(s)
- Shuyu I. Zhu
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | | |
Collapse
|
9
|
Fouilloux CA, Yovanovich CAM, Rojas B. Tadpole Responses to Environments With Limited Visibility: What We (Don’t) Know and Perspectives for a Sharper Future. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.766725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Amphibian larvae typically inhabit relatively shallow freshwater environments, and within these boundaries there is considerable diversity in the structure of the habitats exploited by different species. This diversity in habitat structure is usually taken into account in relation to aspects such as locomotion and feeding, and plays a fundamental role in the classification of tadpoles into ecomorphological guilds. However, its impact in shaping the sensory worlds of different species is rarely addressed, including the optical qualities of each of these types of water bodies and the challenges and limitations that they impose on the repertoire of visual abilities available for a typical vertebrate eye. In this Perspective article, we identify gaps in knowledge on (1) the role of turbidity and light-limited environments in shaping the larval visual system; and (2) the possible behavioral and phenotypic responses of larvae to such environments. We also identify relevant unaddressed study systems paying special attention to phytotelmata, whose small size allows for extensive quantification and manipulation providing a rich and relatively unexplored research model. Furthermore, we generate hypotheses ranging from proximate shifts (i.e., red-shifted spectral sensitivity peaks driven by deviations in chromophore ratios) to ultimate changes in tadpole behavior and phenotype, such as reduced foraging efficiency and the loss of antipredator signaling. Overall, amphibians provide an exciting opportunity to understand adaptations to visually limited environments, and this framework will provide novel experimental considerations and interpretations to kickstart future research based on understanding the evolution and diversity of strategies used to cope with limited visibility.
Collapse
|
10
|
Bartel P, Yoshimatsu T, Janiak FK, Baden T. Spectral inference reveals principal cone-integration rules of the zebrafish inner retina. Curr Biol 2021; 31:5214-5226.e4. [PMID: 34653362 PMCID: PMC8669161 DOI: 10.1016/j.cub.2021.09.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 01/05/2023]
Abstract
Retinal bipolar cells integrate cone signals at dendritic and axonal sites. The axonal route, involving amacrine cells, remains largely uncharted. However, because cone types differ in their spectral sensitivities, insights into bipolar cells' cone integration might be gained based on their spectral tunings. We therefore recorded in vivo responses of bipolar cell presynaptic terminals in larval zebrafish to widefield but spectrally resolved flashes of light and mapped the results onto spectral responses of the four cones. This "spectral circuit mapping" allowed explaining ∼95% of the spectral and temporal variance of bipolar cell responses in a simple linear model, thereby revealing several notable integration rules of the inner retina. Bipolar cells were dominated by red-cone inputs, often alongside equal sign inputs from blue and green cones. In contrast, UV-cone inputs were uncorrelated with those of the remaining cones. This led to a new axis of spectral opponency where red-, green-, and blue-cone "Off" circuits connect to "natively-On" UV-cone circuits in the outermost fraction of the inner plexiform layer-much as how key color opponent circuits are established in mammals. Beyond this, and despite substantial temporal diversity that was not present in the cones, bipolar cell spectral tunings were surprisingly simple. They either approximately resembled both opponent and non-opponent spectral motifs already present in the cones or exhibited a stereotyped non-opponent broadband response. In this way, bipolar cells not only preserved the efficient spectral representations in the cones but also diversified them to set up a total of six dominant spectral motifs, which included three axes of spectral opponency.
Collapse
Affiliation(s)
- Philipp Bartel
- School of Life Sciences, University of Sussex, Biology Road, BN1 9QG Brighton, UK
| | - Takeshi Yoshimatsu
- School of Life Sciences, University of Sussex, Biology Road, BN1 9QG Brighton, UK
| | - Filip K Janiak
- School of Life Sciences, University of Sussex, Biology Road, BN1 9QG Brighton, UK
| | - Tom Baden
- School of Life Sciences, University of Sussex, Biology Road, BN1 9QG Brighton, UK; Institute of Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany.
| |
Collapse
|
11
|
Yoshimatsu T, Bartel P, Schröder C, Janiak FK, St-Pierre F, Berens P, Baden T. Ancestral circuits for vertebrate color vision emerge at the first retinal synapse. SCIENCE ADVANCES 2021; 7:eabj6815. [PMID: 34644120 PMCID: PMC8514090 DOI: 10.1126/sciadv.abj6815] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
For color vision, retinal circuits separate information about intensity and wavelength. In vertebrates that use the full complement of four “ancestral” cone types, the nature and implementation of this computation remain poorly understood. Here, we establish the complete circuit architecture of outer retinal circuits underlying color processing in larval zebrafish. We find that the synaptic outputs of red and green cones efficiently rotate the encoding of natural daylight in a principal components analysis–like manner to yield primary achromatic and spectrally opponent axes, respectively. Blue cones are tuned to capture most remaining variance when opposed to green cones, while UV cone present a UV achromatic axis for prey capture. We note that fruitflies use essentially the same strategy. Therefore, rotating color space into primary achromatic and chromatic axes at the eye’s first synapse may thus be a fundamental principle of color vision when using more than two spectrally well-separated photoreceptor types.
Collapse
Affiliation(s)
| | - Philipp Bartel
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Cornelius Schröder
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | | | - François St-Pierre
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Philipp Berens
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, UK
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Corresponding author.
| |
Collapse
|
12
|
Abstract
The use of spectral information in natural light to inform behaviour is one of the oldest and most fundamental abilities of visual systems. It long-predates animals' venture onto the land, and even the appearance of image-forming eyes. Accordingly, circuits for colour vision evolved under the surface of ancient oceans for hundreds of millions of years. These aquatic beginnings fundamentally underpin, and likely constrain, the organisation of modern visual systems. In contrast to our detailed circuit level understanding from diverse terrestrial vertebrates, however, comparatively little is known about their aquatic counterparts. Here, I summarise some of what is known about neural circuits for colour vision in fish, the most species-diverse group of vertebrates. With a focus on zebrafish, I will explore how their computational strategies are linked to the statistics of natural light in the underwater world, and how their study might help us understand vision in general, including in our own eyes.
Collapse
|
13
|
Guggiana Nilo DA, Riegler C, Hübener M, Engert F. Distributed chromatic processing at the interface between retina and brain in the larval zebrafish. Curr Biol 2021; 31:1945-1953.e5. [PMID: 33636122 DOI: 10.1016/j.cub.2021.01.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/30/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Larval zebrafish (Danio rerio) are an ideal organism for studying color vision, as their retina possesses four types of cone photoreceptors, covering most of the visible range and into the UV.1,2 Additionally, their eye and nervous systems are accessible to imaging, given that they are naturally transparent.3-5 Recent studies have found that, through a set of wavelength-range-specific horizontal, bipolar, and retinal ganglion cells (RGCs),6-9 the eye relays tetrachromatic information to several retinorecipient areas (RAs).10-13 The main RA is the optic tectum, receiving 97% of the RGC axons via the neuropil mass termed arborization field 10 (AF10).14,15 Here, we aim to understand the processing of chromatic signals at the interface between RGCs and their major brain targets. We used 2-photon calcium imaging to separately measure the responses of RGCs and neurons in the brain to four different chromatic stimuli in awake animals. We find that chromatic information is widespread throughout the brain, with a large variety of responses among RGCs, and an even greater diversity in their targets. Specific combinations of response types are enriched in specific nuclei, but there is no single color processing structure. In the main interface in this pathway, the connection between AF10 and tectum, we observe key elements of neural processing, such as enhanced signal decorrelation and improved chromatic decoding.16,17 A richer stimulus set revealed that these enhancements occur in the context of a more distributed code in tectum, facilitating chromatic signal association in this small vertebrate brain.
Collapse
Affiliation(s)
- Drago A Guggiana Nilo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Biophysics Graduate Program, Harvard University, Boston, MA 02115, USA; Department Synapses-Circuits-Plasticity, Max Planck Institute of Neurobiology, 81252 Martinsried, Germany.
| | - Clemens Riegler
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Neuroscience and Developmental Biology, University of Vienna, A-1090 Vienna, Austria
| | - Mark Hübener
- Department Synapses-Circuits-Plasticity, Max Planck Institute of Neurobiology, 81252 Martinsried, Germany
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|