1
|
Zhang Y, Li S, Chen Y, Ye Y, Wu P, Xie L, DU W. Does embryonic behavioral thermoregulation enhance thermoregulatory capacity of turtle hatchlings? Integr Zool 2024. [PMID: 39245877 DOI: 10.1111/1749-4877.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
We found that embryonic behavioral thermoregulation could not enhance the thermoregulatory capacity of turtle hatchlings. Our study is not only the first to provide experimental evidence regarding the impact of embryonic behavioral thermoregulation on offspring thermoregulation but also falsifies the play behavior hypothesis that suggests thermotaxis by embryos allows them to practice thermoregulatory tactics at later life stages.
Collapse
Affiliation(s)
- Yongpu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Shuran Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Yongrui Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yinzi Ye
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengfei Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lei Xie
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Weiguo DU
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Lisondro-Arosemena AK, Salazar-Nicholls MJ, Warkentin KM. Elevated ammonia cues hatching in red-eyed treefrogs: A mechanism for escape from drying eggs. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:406-411. [PMID: 38708813 DOI: 10.1002/jez.b.23253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/01/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
Egg dehydration can kill terrestrial frog embryos, and this threat is increasing with climate change and deforestation. In several lineages that independently evolved terrestrial eggs, and retained aquatic tadpoles, embryos accelerate hatching to escape from drying eggs, entering the water earlier and less developed. However, the cues that stimulate drying-induced early hatching are unknown. Ammonia is a toxic, water-soluble metabolic waste that accumulates within eggs as embryos develop and concentrates as eggs dehydrate. Thus, increasing ammonia concentration may be a direct threat to embryos in drying eggs. We hypothesized that it could serve as a cue, stimulating embryos to hatch and escape. The embryos of red-eyed treefrogs, Agalychnis callidryas, hatch early to escape from many threats, including dehydration, and are known to use mechanosensory, hypoxia, and light cues. To test if they also use high ammonia as a cue to hatch, we exposed stage-matched pairs of hatching-competent, well-hydrated sibling embryos to ammonia and control solutions in shallow water baths and recorded their behavior. Control embryos remained unhatched while ammonia-exposed embryos showed a rapid, strong hatching response; 95% hatched, on average in under 15 min. This demonstrates that elevated ammonia can serve as a hatching cue for A. callidryas embryos. This finding is a key step in understanding the mechanisms that enable terrestrial frog embryos to escape from egg drying, opening new possibilities for integrative and comparative studies on this growing threat.
Collapse
Affiliation(s)
| | | | - Karen M Warkentin
- Gamboa Laboratory, Smithsonian Tropical Research Institute, Panamá, Panamá
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Li J, Song Y. Plant thermosensors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112025. [PMID: 38354752 DOI: 10.1016/j.plantsci.2024.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Plants dynamically regulate their genes expression and physiological outputs to adapt to changing temperatures. The underlying molecular mechanisms have been extensively studied in diverse plants and in multiple dimensions. However, the question of exactly how temperature is detected at molecular level to transform the physical information into recognizable intracellular signals remains continues to be one of the undetermined occurrences in plant science. Recent studies have provided the physical and biochemical mechanistic breakthrough of how temperature changes can influence molecular thermodynamically stability, thus changing molecular structures, activities, interaction and signaling transduction. In this review, we focus on the thermosensing mechanisms of recognized and potential plant thermosensors, to describe the multi-level thermal input system in plants. We also consider the attributes of a thermosensor on the basis of thermal-triggered changes in function, structure, and physical parameters. This study thus provides a reference for discovering more plant thermosensors and elucidating plant thermal adaptive mechanisms.
Collapse
Affiliation(s)
- Jihong Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuan Song
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China.
| |
Collapse
|
4
|
Eisenberg T, Shein-Idelson M. ReptiLearn: An automated home cage system for behavioral experiments in reptiles without human intervention. PLoS Biol 2024; 22:e3002411. [PMID: 38422162 PMCID: PMC10931465 DOI: 10.1371/journal.pbio.3002411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Understanding behavior and its evolutionary underpinnings is crucial for unraveling the complexities of brain function. Traditional approaches strive to reduce behavioral complexity by designing short-term, highly constrained behavioral tasks with dichotomous choices in which animals respond to defined external perturbation. In contrast, natural behaviors evolve over multiple time scales during which actions are selected through bidirectional interactions with the environment and without human intervention. Recent technological advancements have opened up new possibilities for experimental designs that more closely mirror natural behaviors by replacing stringent experimental control with accurate multidimensional behavioral analysis. However, these approaches have been tailored to fit only a small number of species. This specificity limits the experimental opportunities offered by species diversity. Further, it hampers comparative analyses that are essential for extracting overarching behavioral principles and for examining behavior from an evolutionary perspective. To address this limitation, we developed ReptiLearn-a versatile, low-cost, Python-based solution, optimized for conducting automated long-term experiments in the home cage of reptiles, without human intervention. In addition, this system offers unique features such as precise temperature measurement and control, live prey reward dispensers, engagement with touch screens, and remote control through a user-friendly web interface. Finally, ReptiLearn incorporates low-latency closed-loop feedback allowing bidirectional interactions between animals and their environments. Thus, ReptiLearn provides a comprehensive solution for researchers studying behavior in ectotherms and beyond, bridging the gap between constrained laboratory settings and natural behavior in nonconventional model systems. We demonstrate the capabilities of ReptiLearn by automatically training the lizard Pogona vitticeps on a complex spatial learning task requiring association learning, displaced reward learning, and reversal learning.
Collapse
Affiliation(s)
- Tal Eisenberg
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Mark Shein-Idelson
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Liu S, Zhao B, Gu X, Du W. Behavioral thermoregulation by reptile embryos promotes hatching success and synchronization. Commun Biol 2023; 6:848. [PMID: 37582884 PMCID: PMC10427690 DOI: 10.1038/s42003-023-05229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Reptile embryos can move inside eggs to seek optimal thermal conditions, falsifying the traditional assumption that embryos are simply passive occupants within their eggs. However, the adaptive significance of this thermoregulatory behavior remains a contentious topic. Here we demonstrate that behavioral thermoregulation by turtle embryos shortened incubation periods which may reduce the duration of exposure to dangerous environments, decreased egg mortality imposed by lethally high temperatures, and synchronized hatching which reduces predation risk. Our study provides empirical evidence that behavioral thermoregulation by turtle embryos is adaptive.
Collapse
Affiliation(s)
- Shuo Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of life sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Bo Zhao
- College of Fisheries, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Xiaoting Gu
- College of life sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Zhu Q, Lin L, Kong F, Zhang T, Shi H. Nocturnal emergence facilitated by thermally‐induced hatching in the Chinese softshell turtle, Pelodiscus sinensis. Ecol Evol 2023; 13:e9922. [PMID: 36969933 PMCID: PMC10034484 DOI: 10.1002/ece3.9922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/25/2023] Open
Abstract
The coincidence of hatching and emergence events with favorable conditions is crucial for turtle survival. Nocturnal emergence has been widely documented across marine and freshwater turtles, and has long been suggested as an adaptive behavior that reduces risks of heat stress and predation. To our knowledge, however, studies related to nocturnal emergence have mainly focused on the post‐hatching behaviors of turtles, and very few experimental studies have been performed to investigate the effects of hatching time on the distribution of emergence times over the course of a day. Here, we visually monitored the activity of the Chinese softshell turtle (Pelodiscus sinensis)—a shallow‐nesting freshwater turtle—from hatching to emergence. Our study provides evidence for the novel finding that (i) the timing of synchronous hatching events in P. sinensis coincides with the time of day when nest temperatures decrease, (ii) the synchrony between hatching and emergence may further facilitate their nocturnal emergence, and (iii) synchronous behaviors of hatchlings in the nest may be effective in reducing the risk of hatchling predation, and predation is more likely to occur in the asynchronous hatching groups. This study suggests that the hatching of shallow‐nesting P. sinensis in response to temperature changes in the nest might be an adaptive nocturnal emergence strategy.
Collapse
Affiliation(s)
- Qingjun Zhu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life SciencesHainan Normal UniversityHaikouChina
| | - Liu Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life SciencesHainan Normal UniversityHaikouChina
| | - Fei Kong
- Shaanxi Provincial Institute of ZoologyXianChina
| | - Ting Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life SciencesHainan Normal UniversityHaikouChina
| | - Hai‐Tao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life SciencesHainan Normal UniversityHaikouChina
| |
Collapse
|
7
|
Zhu W, Zhao T, Zhao C, Li C, Xie F, Liu J, Jiang J. How will warming affect the growth and body size of the largest extant amphibian? More than the temperature-size rule. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160105. [PMID: 36370793 DOI: 10.1016/j.scitotenv.2022.160105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Declining body size is a universal ecological response to global warming in ectotherms. Ectotherms grow faster but mature at a smaller size at higher temperatures. This phenomenon is known as the temperature-size rule (TSR). However, we know little about the details of the relationship between temperature and size. Here, this issue was studied in the Chinese giant salamander (Andrias davidianus), one of the largest extant amphibians and a flagship species of conservation in China. Warm-acclimated A. davidianus larvae (25 °C) had accelerated development but little superiority in body growth when compared to their 15 °C counterparts when fed with red worm. This predicts a drastic decrease in adult body size with warming. However, a fish diet (more abundant lipid and protein) improved the growth performance at 25 °C. The underlying mechanism was studied. Warm-acclimated larvae had enlarged livers but shortened tails (fat depot). Their livers suffered from energy deficiencies and decreased protein levels, even when protein synthesis and energy metabolism were transcriptionally upregulated. This could be a direct explanation for their poor growth performance. Further analyses revealed a metabolic disorder resembling mammal glycogen storage disease in warm-acclimated larvae, indicating deficiency in glycogen catabolism. This speculation is consistent with their increased lipid and amino acid catabolism and explained the poor energy conditions of the warm-acclimated larvae. Additionally, a deficiency in glycogen metabolism explains the different efficiency of worm and fish diets in supporting the growth of warm-acclimated larvae, even when both diets were provided sufficiently. In conclusion, our results suggest that the relationship between temperature and body size can be flexible, which is a significant finding in terms of the TSR. The underlying metabolic and nutrient mechanisms were revealed. This knowledge can help deepen our understanding of the consequences of warming and can contribute to the conservation of A. davidianus.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Chunlin Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Cheng Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Jiongyu Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
8
|
Zhang L, Li N, Dayananda B, Wang L, Chen H, Cao Y. Genome-Wide Identification and Phylogenetic Analysis of TRP Gene Family Members in Saurian. Animals (Basel) 2022; 12:3593. [PMID: 36552513 PMCID: PMC9774356 DOI: 10.3390/ani12243593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The transient receptor potential plays a critical role in the sensory nervous systems of vertebrates in response to various mechanisms and stimuli, such as environmental temperature. We studied the physiological adaptive evolution of the TRP gene in the saurian family and performed a comprehensive analysis to identify the evolution of the thermo-TRPs channels. All 251 putative TRPs were divided into 6 subfamilies, except TRPN, from the 8 saurian genomes. Multiple characteristics of these genes were analyzed. The results showed that the most conserved proteins of TRP box 1 were located in motif 1, and those of TRP box 2 were located in motif 10. The TRPA and TRPV in saurian tend to be one cluster, as a sister cluster with TRPC, and the TRPM is the root of group I. The TRPM, TRPV, and TRPP were clustered into two clades, and TRPP were organized into TRP PKD1-like and PKD2-like. Segmental duplications mainly occurred in the TRPM subfamily, and tandem duplications only occurred in the TRPV subfamily. There were 15 sites to be under positive selection for TRPA1 and TRPV2 genes. In summary, gene structure, chromosomal location, gene duplication, synteny analysis, and selective pressure at the molecular level provided some new evidence for genetic adaptation to the environment. This result provides a basis for identifying and classifying TRP genes and contributes to further elucidating their potential function in thermal sensors.
Collapse
Affiliation(s)
- Lin Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan 430223, China
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ning Li
- College of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Buddhi Dayananda
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Huimin Chen
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
9
|
Zhang H, Wang C, Zhang K, Kamau PM, Luo A, Tian L, Lai R. The role of TRPA1 channels in thermosensation. CELL INSIGHT 2022; 1:100059. [PMID: 37193355 PMCID: PMC10120293 DOI: 10.1016/j.cellin.2022.100059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 05/18/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a polymodal receptor for the perceiving of irritating chemicals, cold, heat, and mechanical sensations in various animal species. Numerous studies have supported many functions of TRPA1, but its temperature-sensing function remains controversial. Although TRPA1 is widely distributed in both invertebrates and vertebrates, and plays a crucial role in tempreture sensing, the role of TRPA1 thermosensation and molecular temperature sensitivity are species-specific. In this review, we summarize the temperature-sensing role of TRPA1 orthologues in terms of molecular, cellular, and behavioural levels.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
| | - Chengsan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keyi Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese, Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lifeng Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese, Academy of Sciences, Kunming, Yunnan, 650223, China
| |
Collapse
|
10
|
Yan C, Wu W, Dong W, Zhu B, Chang J, Lv Y, Yang S, Li JT. Temperature acclimation in hot-spring snakes and the convergence of cold response. Innovation (N Y) 2022; 3:100295. [PMID: 36032194 PMCID: PMC9405097 DOI: 10.1016/j.xinn.2022.100295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
Animals have evolved sophisticated temperature-sensing systems and mechanisms to detect and respond to ambient temperature changes. As a relict species endemic to the Qinghai-Tibet Plateau, hot-spring snake (Thermophis baileyi) survived the dramatic changes in climate that occurred during plateau uplift and ice ages, providing an excellent opportunity to explore the evolution of temperature sensation in ectotherms. Based on distributional information and behavioral experiments, we found that T. baileyi prefer hot-spring habitats and respond more quickly to warmth than other two snakes, suggesting that T. baileyi may evolve an efficient thermal-sensing system. Using high-quality chromosome-level assembly and comparative genomic analysis, we identified cold acclimation genes experiencing convergent acceleration in high-altitude lineages. We also discovered significant evolutionary changes in thermosensation- and thermoregulation-related genes, including the transient receptor potential (TRP) channels. Among these genes, TRPA1 exhibited three species-specific amino acid replacements, which differed from those found in infrared imaging snakes, implying different temperature-sensing molecular strategies. Based on laser-heating experiments, the T. baileyi-specific mutations in TRPA1 resulted in an increase in heat-induced opening probability and thermal sensitivity of the ion channels under the same degree of temperature stimulation, which may help the organism respond to temperature changes more quickly. These results provide insight into the genetic mechanisms underpinning the evolution of temperature-sensing strategies in ectotherms as well as genetic evidence of temperature acclimation in this group. Hot-spring snakes prefer hot-spring habitats on the Qinghai-Tibet Plateau Genetic variation in the snakes contribute to the temperature acclimation Unique mutations in TRPA1 increase thermal sensitivity of the ion channel Different temperature-sensing strategies existed across snakes
Collapse
|
11
|
Jung J, Guo M, Crovella ME, McDaniel JG, Warkentin KM. Frog embryos use multiple levels of temporal pattern in risk assessment for vibration-cued escape hatching. Anim Cogn 2022; 25:1527-1544. [PMID: 35668245 DOI: 10.1007/s10071-022-01634-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022]
Abstract
Stereotyped signals can be a fast, effective means of communicating danger, but animals assessing predation risk must often use more variable incidental cues. Red eyed-treefrog, Agalychnis callidryas, embryos hatch prematurely to escape from egg predators, cued by vibrations in attacks, but benign rain generates vibrations with overlapping properties. Facing high false-alarm costs, embryos use multiple vibration properties to inform hatching, including temporal pattern elements such as pulse durations and inter-pulse intervals. However, measures of snake and rain vibration as simple pulse-interval patterns are a poor match to embryo behavior. We used vibration playbacks to assess if embryos use a second level of temporal pattern, long gaps within a rhythmic pattern, as indicators of risks. Long vibration-free periods are common during snake attacks but absent from hard rain. Long gaps after a few initial vibrations increase the hatching response to a subsequent vibration series. Moreover, vibration patterns as short as three pulses, separated by long periods of silence, can induce as much hatching as rhythmic pulse series with five times more vibration. Embryos can retain information that increases hatching over at least 45 s of silence. This work highlights that embryo behavior is contextually modulated in complex ways. Identical vibration pulses, pulse groups, and periods of silence can be treated as risk cues in some contexts and not in others. Embryos employ a multi-faceted decision-making process to effectively distinguish between risk cues and benign stimuli.
Collapse
Affiliation(s)
- Julie Jung
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
| | - Ming Guo
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Mark E Crovella
- Department of Computer Science, 111 Cummington Mall, Boston, MA, 02215, USA
| | - J Gregory McDaniel
- Department of Mechanical Engineering, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Karen M Warkentin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.,Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama, Republic of Panama
| |
Collapse
|
12
|
Du WG, Shine R. The behavioural and physiological ecology of embryos: responding to the challenges of life inside an egg. Biol Rev Camb Philos Soc 2022; 97:1272-1286. [PMID: 35166012 DOI: 10.1111/brv.12841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022]
Abstract
Adaptations of post-hatching animals have attracted far more study than have embryonic responses to environmental challenges, but recent research suggests that we have underestimated the complexity and flexibility of embryos. We advocate a dynamic view of embryos as organisms capable of responding - on both ecological and evolutionary timescales - to their developmental environments. By viewing embryos in this way, rather than assuming an inability of pre-hatching stages to adapt and respond, we can broaden the ontogenetic breadth of evolutionary and ecological research. Both biotic and abiotic factors affect embryogenesis, and embryos exhibit a broad range of behavioural and physiological responses that enable them to deal with changes in their developmental environments in the course of interactions with their parents, with other embryos, with predators, and with the physical environment. Such plasticity may profoundly affect offspring phenotypes and fitness, and in turn influence the temporal and spatial dynamics of populations and communities. Future research in this field could benefit from an integrated framework that combines multiple approaches (field investigations, manipulative experiments, ecological modelling) to clarify the mechanisms and consequences of embryonic adaptations and plasticity.
Collapse
Affiliation(s)
- Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|