1
|
Robertson C, Xue H, Saltini M, Fairnie ALM, Lang D, Kerstens MHL, Willemsen V, Ingle RA, Barrett SCH, Deinum EE, Illing N, Lenhard M. Spiral phyllotaxis predicts left-right asymmetric growth and style deflection in mirror-image flowers of Cyanella alba. Nat Commun 2025; 16:3695. [PMID: 40251172 PMCID: PMC12008388 DOI: 10.1038/s41467-025-58803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/28/2025] [Indexed: 04/20/2025] Open
Abstract
Many animals and plants show left-right (LR) asymmetry. The LR asymmetry of mirror-image flowers has clear functional significance, with the reciprocal placement of male and female organs in left- versus right-handed flowers promoting cross-pollination. Here, we study how handedness of mirror-image flowers is determined and elaborated during development in the South African geophyte Cyanella alba. Inflorescences of C. alba produce flowers with a largely consistent handedness. However, this handedness has no simple genetic basis and individual plants can switch their predominant handedness between years. Rather, it is the direction of the phyllotactic spiral that predicts floral handedness. Style deflection is driven by increased cell expansion in the adaxial carpel facing the next oldest flower compared to the other adaxial carpel. The more expanding carpel shows transcriptional signatures of increased auxin signaling and auxin application can reverse the orientation of style deflection. We propose that a recently described inherent LR auxin asymmetry in the initiating organs of spiral phyllotaxis determines handedness in C. alba, creating a stable yet non-genetic floral polymorphism. This mechanism links chirality across different levels of plant development and exploits a developmental constraint in a core patterning process to produce morphological variation of ecological relevance.
Collapse
Affiliation(s)
- Caroline Robertson
- University of Cape Town, Department of Molecular and Cell Biology, Rondebosch, 7701, South Africa
| | - Haoran Xue
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Marco Saltini
- Mathematical and Statistical Methods (Biometris), Plant Science Group, 6708 PB, Wageningen, The Netherlands
| | - Alice L M Fairnie
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | - Dirk Lang
- University of Cape Town, Department of Human Biology, Observatory, 7925, South Africa
| | - Merijn H L Kerstens
- Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Viola Willemsen
- Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Robert A Ingle
- University of Cape Town, Department of Molecular and Cell Biology, Rondebosch, 7701, South Africa
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | - Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, 6708 PB, Wageningen, The Netherlands
| | - Nicola Illing
- University of Cape Town, Department of Molecular and Cell Biology, Rondebosch, 7701, South Africa
| | - Michael Lenhard
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany.
| |
Collapse
|
2
|
Simón‐Porcar V, Muñoz‐Pajares AJ, Arroyo J, Johnson SD. FlowerMate: Multidimensional reciprocity and inaccuracy indices for style-polymorphic plant populations. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11618. [PMID: 39628539 PMCID: PMC11610417 DOI: 10.1002/aps3.11618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/12/2024] [Accepted: 06/07/2024] [Indexed: 12/06/2024]
Abstract
Premise Heterostyly in plants promotes pollen transfer between floral morphs, because female and male sex organs are located at roughly reciprocal heights within the flowers of each morph. Reciprocity indices, which assess the one-dimensional variation in the height of sex organs, are used to define the phenotypic structure of heterostyly in plant populations and to make inferences about selection. Other reciprocal stylar polymorphisms (e.g., enantiostyly) may function in a similar manner to heterostyly. In-depth assessment of their potential fit with pollinators requires accounting for the multidimensional variation in the location of sex organs. Methods and Results We have adapted the existing reciprocity indices used for heterostylous plant populations to incorporate multidimensional data. We illustrate the computation of the adapted and original indices in the freely available R package FlowerMate. Conclusions FlowerMate provides fast computation of reliable indices to facilitate understanding of the evolution and function of the full diversity of reciprocal polymorphisms.
Collapse
Affiliation(s)
- Violeta Simón‐Porcar
- Department of Plant Biology and EcologyUniversity of SevilleSevilleE‐41080Spain
- Centre for Functional Biodiversity, School of Life SciencesUniversity of KwaZulu‐NatalPietermaritzburg3209South Africa
| | - A. Jesús Muñoz‐Pajares
- Department of GeneticsUniversity of GranadaGranadaE‐18071Spain
- Research Unit Modeling NatureUniversity of GranadaGranadaE‐18071Spain
| | - Juan Arroyo
- Department of Plant Biology and EcologyUniversity of SevilleSevilleE‐41080Spain
| | - Steven D. Johnson
- Centre for Functional Biodiversity, School of Life SciencesUniversity of KwaZulu‐NatalPietermaritzburg3209South Africa
| |
Collapse
|
3
|
Petit S, Scanlon AT, Naikatini A, Pukala T. Dillenia (Dilleniaceae) pollen heteromorphy and presentation, and implications for pollination by bats. Ecol Evol 2024; 14:e10997. [PMID: 38343577 PMCID: PMC10857942 DOI: 10.1002/ece3.10997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 10/28/2024] Open
Abstract
Bat pollination of Dillenia in Fiji, a genus that was presumed to be pollinated by bees, posits that other Dillenia species may be bat-pollinated, with implications for conservation and the understanding of angiosperm evolution. Botanical descriptions of some corolla behaviours ('falling as a whole') suggest bat removal of permanently closed corollas, as in D. biflora. Considering the remoteness of species of interest, we reviewed some Dillenia floral traits to hypothesise what they may mean for bat pollination of the genus. We investigated D. biflora pollen grains apertures and reviewed Dillenia literature concerning corolla behaviour and colour, and pollen apertures and presentation, including pores and staminodes. Our samples had dramatically different ratios of tricolpate to tetracolpate pollen grains, a trait that does not exclude pollination by bees. Petal colour polymorphism occurs, with mixed colours proportionately less common in flowers with corollas that open. The proportion of species with staminodes did not differ between those presumed to be pollinated by bats and others, but anthers of the former were significantly more likely to have apical pores, and stamens all had similar length or were slightly longer in the middle, whereas stamens in two distinct groups occurred in 55% of bee-pollinated species. Pollen heteromorphy may facilitate pollination by different taxa in tropical environments. However, anther apical pores and stamen uniformity are more likely to be associated with bat-pollinated species than are other morphologies. Dillenia could be a useful model to examine evolutionary aspects of colour, heteranthery, staminodes and pollen heteromorphy. Only field work will verify bat pollination and the implications of bat dependence for Dillenia species.
Collapse
Affiliation(s)
- Sophie Petit
- UniSA STEM University of South Australia Mawson Lakes South Australia Australia
- NatureFiji-MareqetiViti Suva Fiji
- Kangaroo Island Research Station Penneshaw South Australia Australia
| | - Annette T Scanlon
- UniSA STEM University of South Australia Mawson Lakes South Australia Australia
- Kangaroo Island Research Station Penneshaw South Australia Australia
- Department of Primary Industries and Regions Invasive Species Unit, Biosecurity Adelaide South Australia Australia
| | - Alivereti Naikatini
- Research and Development Division Ministry of Forestry and Fisheries, Fiji Government Suva Fiji
| | - Tara Pukala
- School of Physics, Chemistry and Earth Sciences University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
4
|
Johnson SD, Midgley JJ, Illing N. The enantiostylous floral polymorphism of Barberetta aurea (Haemodoraceae) facilitates wing pollination by syrphid flies. ANNALS OF BOTANY 2023; 132:1107-1118. [PMID: 37632775 PMCID: PMC10809052 DOI: 10.1093/aob/mcad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/25/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND AND AIMS Sexual polymorphisms of flowers have traditionally been interpreted as devices that promote cross-pollination, but they may also represent adaptations for exploiting particular pollination niches in local environments. The cross-pollination function of enantiostyly, characterized by flowers having either left- or right-deflected styles, has been uncertain in some lineages, such as the Haemodoraceae, because the positioning of stamens and styles is not always completely reciprocal among morphs. METHODS We examined the floral biology of populations of the poorly known species Barberetta aurea (Haemodoraceae) across its native range in South Africa to establish the general features of its enanatiostylous reproductive system and the agents and mechanism of pollen transfer. RESULTS We confirmed that B. aurea has a system of dimorphic enantiostyly. Style morph ratios varied among populations sampled, but with an overall tendency to being equal. Crossing experiments demonstrated that B. aurea is fully self-compatible, that intra- and inter-morph crosses are equally fertile and that it is wholly dependent on pollinator visits for seed production. Pollination is mainly by syrphid flies that transfer the sticky pollen via their wings, which contact the anthers and stigma precisely as they hover during approach and feeding. The majority of syrphid fly visitors feed on a film of highly concentrated nectar situated at the base of ultraviolet-absorbent 'nectar guides'. Because one of the three stamens is deflected in the same direction as the style, we predicted a high likelihood of intra-morph pollination, and this was corroborated by patterns of transfer of coloured dye particles in cage experiments involving syrphid flies. CONCLUSIONS Barbaretta aurea exhibits dimorphic enantiostyly and, in contrast to most enantiostylous species, which are pollinated by bees, its flowers are specialized for pollination by syrphid flies. The lack of complete reciprocity of the enantiostylous arrangement of sexual organs facilitates both inter- and intra-morph pollen transfer on the wings of these flies.
Collapse
Affiliation(s)
- Steven D Johnson
- Centre for Functional Biodiversity, University of KwaZulu-Natal, 3209 Pietermaritzburg, South Africa
| | - Jeremy J Midgley
- Department of Biological Sciences, University of Cape Town, 7701 Cape Town, South Africa
| | - Nicola Illing
- Department of Molecular and Cell Biology, University of Cape Town, 7701 Cape Town, South Africa
| |
Collapse
|
5
|
Huang SQ. Understanding complex mirror-image flowers - a commentary on: 'The enantiostylous floral polymorphism of Barberetta aurea (Haemodoraceae) facilitates wing pollination by syrphid flies'. ANNALS OF BOTANY 2023; 132:viii-x. [PMID: 37878783 PMCID: PMC10809042 DOI: 10.1093/aob/mcad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
This article comments on:
Steven D. Johnson, Jeremy J. Midgley and Nicola Illing. The enantiostylous floral polymorphism of Barberetta aurea (Haemodoraceae) facilitates wing pollination by syrphid flies, Annals of Botany, Volume 132, Issue 6, 3 November 2023, Pages 1107–1118, https://doi.org/10.1093/aob/mcad118
Collapse
Affiliation(s)
- Shuang-Quan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
6
|
Reategui-Inga M, Rojas EM, Tineo D, Araníbar-Araníbar MJ, Valdiviezo WA, Escalante CA, Ruiz Castre SJ. Effects of Artificial Electromagnetic Fields on Bees: A Global Review. Pak J Biol Sci 2023; 26:23-32. [PMID: 37129202 DOI: 10.3923/pjbs.2023.23.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
<b>Background and Objective:</b> Electromagnetic fields coming from electric and electronic devices, mobile telephony antennas, or electrical installations are continuously growing and are in direct relation with population growth. In that sense, the purpose of this investigation was to determine what are the effects of artificial electromagnetic fields on the behavior and viability of bees through a global perspective (1968-2022). <b>Materials and Methods:</b> The methodology used in this research consisted of the review of literature obtained from platforms such as Scopus, EBSCO, IEEE, Wiley, Google Scholar and Taylor & Francis. <b>Results:</b> It was possible to review 36 studies on the field and to state that investigations on this topic have increased in 2019, at a compounded annual growth rate (CAGR) of 6.86% (in a period of 54 years). Poland and USA are the leading countries in the number and importance of investigations on this topic. Keywords were grouped on the basis of the advancement of the research (honeybee, animals, <i>Apis mellifera</i> and apoideos). <b>Conclusion:</b> The study of the effects of electromagnetic fields on bees makes it possible to understand its impact on the metabolism and viability of bees.
Collapse
|
7
|
Nevard L, Vallejo‐Marín M. Floral orientation affects outcross-pollen deposition in buzz-pollinated flowers with bilateral symmetry. AMERICAN JOURNAL OF BOTANY 2022; 109:1568-1578. [PMID: 36193950 PMCID: PMC9828177 DOI: 10.1002/ajb2.16078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 05/28/2023]
Abstract
PREMISE Floral orientation is central to plant-pollinator interactions and is commonly associated with floral symmetry. Bilaterally symmetrical flowers are often oriented horizontally for optimal pollinator positioning and pollen transfer efficiency, while the orientation of radially symmetrical flowers is variable. Buzz-pollinated species (pollinated by vibration-producing bees) include bilateral, horizontally oriented flowers, and radial, pendant flowers. The effect of floral orientation on pollen transfer has never been tested in buzz-pollinated species. METHODS Here, we examined the effect of floral orientation on bumblebee-mediated pollen deposition in three buzz-pollinated Solanum species with different floral symmetry and natural orientations: S. lycopersicum and S. seaforthianum (radial, pendant), and S. rostratum (bilateral, horizontal). We tested whether orientation affects total stigmatic pollen deposition (both self and outcross pollen) when all flowers have the same orientation (either pendant or horizontal). In a second experiment, we evaluated whether different orientations of donor and recipient flowers affects the receipt of outcross pollen by S. rostratum. RESULTS For the three Solanum species studied, there was no effect of floral orientation on total pollen deposition (both self and outcross) when flowers shared the same orientation. In contrast, in our experiment with S. rostratum, we found that pendant flowers received fewer outcross-pollen grains when paired with pendant donors. CONCLUSIONS We suggest that floral orientation influences the quality of pollen transferred, with more outcross pollen transferred to horizontally oriented recipients in the bilaterally symmetrical S. rostratum. Whether other bilaterally symmetrical, buzz-pollinated flowers also benefit from increased cross-pollination when presented horizontally remains to be established.
Collapse
Affiliation(s)
- Lucy Nevard
- Biological & Environmental SciencesUniversity of StirlingStirlingUKFK9 4LA
| | | |
Collapse
|
8
|
Karron JD, Christopher DA, Semski WR. Pollen transport: Illuminating a key mechanism of disassortative pollination. Curr Biol 2021; 31:R893-R895. [PMID: 34314713 DOI: 10.1016/j.cub.2021.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Floral sexual polymorphisms have evolved repeatedly in angiosperms and are thought to reduce self-pollination and increase pollen export. Using a powerful pollen-labeling technique, quantum dots, a new study shows that pollen placement on pollinator bodies plays a critical role in disassortative pollination.
Collapse
Affiliation(s)
- Jeffrey D Karron
- Department of Biological Sciences, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201, USA.
| | - Dorothy A Christopher
- Department of Biological Sciences, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201, USA
| | - Wendy R Semski
- Department of Biological Sciences, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201, USA
| |
Collapse
|