1
|
Title PO, Singhal S, Grundler MC, Costa GC, Pyron RA, Colston TJ, Grundler MR, Prates I, Stepanova N, Jones MEH, Cavalcanti LBQ, Colli GR, Di-Poï N, Donnellan SC, Moritz C, Mesquita DO, Pianka ER, Smith SA, Vitt LJ, Rabosky DL. The macroevolutionary singularity of snakes. Science 2024; 383:918-923. [PMID: 38386744 DOI: 10.1126/science.adh2449] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/02/2024] [Indexed: 02/24/2024]
Abstract
Snakes and lizards (Squamata) represent a third of terrestrial vertebrates and exhibit spectacular innovations in locomotion, feeding, and sensory processing. However, the evolutionary drivers of this radiation remain poorly known. We infer potential causes and ultimate consequences of squamate macroevolution by combining individual-based natural history observations (>60,000 animals) with a comprehensive time-calibrated phylogeny that we anchored with genomic data (5400 loci) from 1018 species. Due to shifts in the dynamics of speciation and phenotypic evolution, snakes have transformed the trophic structure of animal communities through the recurrent origin and diversification of specialized predatory strategies. Squamate biodiversity reflects a legacy of singular events that occurred during the early history of snakes and reveals the impact of historical contingency on vertebrate biodiversity.
Collapse
Affiliation(s)
- Pascal O Title
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Environmental Resilience Institute, Indiana University, Bloomington, IN 47408, USA
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sonal Singhal
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747, USA
| | - Michael C Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel C Costa
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Timothy J Colston
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
- Biology Department, University of Puerto Rico at Mayagüez, Mayagüez 00680, Puerto Rico
| | - Maggie R Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ivan Prates
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natasha Stepanova
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marc E H Jones
- Science Group: Fossil Reptiles, Amphibians and Birds Section, Natural History Museum, London SW7 5BD, UK
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
- Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Lucas B Q Cavalcanti
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal 70910-900, Brazil
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | - Craig Moritz
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Daniel O Mesquita
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Eric R Pianka
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laurie J Vitt
- Sam Noble Museum and Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Daniel L Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Brownstein CD, Simões TR, Caldwell MW, Lee MSY, Meyer DL, Scarpetta SG. The affinities of the Late Triassic Cryptovaranoides and the age of crown squamates. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230968. [PMID: 37830017 PMCID: PMC10565374 DOI: 10.1098/rsos.230968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Most living reptile diversity is concentrated in Squamata (lizards, including snakes), which have poorly known origins in space and time. Recently, †Cryptovaranoides microlanius from the Late Triassic of the United Kingdom was described as the oldest crown squamate. If true, this result would push back the origin of all major lizard clades by 30-65 Myr and suggest that divergence times for reptile clades estimated using genomic and morphological data are grossly inaccurate. Here, we use computed tomography scans and expanded phylogenetic datasets to re-evaluate the phylogenetic affinities of †Cryptovaranoides and other putative early squamates. We robustly reject the crown squamate affinities of †Cryptovaranoides, and instead resolve †Cryptovaranoides as a potential member of the bird and crocodylian total clade, Archosauromorpha. Bayesian total evidence dating supports a Jurassic origin of crown squamates, not Triassic as recently suggested. We highlight how features traditionally linked to lepidosaurs are in fact widespread across Triassic reptiles. Our study reaffirms the importance of critically choosing and constructing morphological datasets and appropriate taxon sampling to test the phylogenetic affinities of problematic fossils and calibrate the Tree of Life.
Collapse
Affiliation(s)
- Chase D. Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
- Stamford Museum and Nature Center, Stamford, CT 06903, USA
| | - Tiago R. Simões
- Department of Organismic and Evolutionary Biology & Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael W. Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael S. Y. Lee
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
- Earth Sciences Section, South Australian Museum, North Terrace, Adelaide 5000, Australia
| | - Dalton L. Meyer
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
| | - Simon G. Scarpetta
- Museum of Vertebrate Zoology, Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Department of Environmental Science, University of San Francisco, San Francisco, CA 94117, USA
| |
Collapse
|
3
|
Solórzano‑Kraemer MM, Peñalver E, Herbert MCM, Delclòs X, Brown BV, Aung NN, Peretti AM. Necrophagy by insects in Oculudentavis and other lizard body fossils preserved in Cretaceous amber. Sci Rep 2023; 13:2907. [PMID: 36808156 PMCID: PMC9938861 DOI: 10.1038/s41598-023-29612-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 02/20/2023] Open
Abstract
When a vertebrate carcass begins its decay in terrestrial environments, a succession of different necrophagous arthropod species, mainly insects, are attracted. Trophic aspects of the Mesozoic environments are of great comparative interest, to understand similarities and differences with extant counterparts. Here, we comprehensively study several exceptional Cretaceous amber pieces, in order to determine the early necrophagy by insects (flies in our case) on lizard specimens, ca. 99 Ma old. To obtain well-supported palaeoecological data from our amber assemblages, special attention has been paid in the analysis of the taphonomy, succession (stratigraphy), and content of the different amber layers, originally resin flows. In this respect, we revisited the concept of syninclusion, establishing two categories to make the palaeoecological inferences more accurate: eusyninclusions and parasyninclusions. We observe that resin acted as a "necrophagous trap". The lack of dipteran larvae and the presence of phorid flies indicates decay was in an early stage when the process was recorded. Similar patterns to those in our Cretaceous cases have been observed in Miocene ambers and actualistic experiments using sticky traps, which also act as "necrophagous traps"; for example, we observed that flies were indicative of the early necrophagous stage, but also ants. In contrast, the absence of ants in our Late Cretaceous cases confirms the rareness of ants during the Cretaceous and suggests that early ants lacked this trophic strategy, possibly related to their sociability and recruitment foraging strategies, which developed later in the dimensions we know them today. This situation potentially made necrophagy by insects less efficient in the Mesozoic.
Collapse
Affiliation(s)
- Mónica M. Solórzano‑Kraemer
- grid.462628.c0000 0001 2184 5457Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - Enrique Peñalver
- CN-Instituto Geológico y Minero de España CSIC, C/Cirilo Amorós 42, 46004, Valencia, Spain.
| | - Mélanie C. M. Herbert
- grid.462628.c0000 0001 2184 5457Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - Xavier Delclòs
- Departament de Dinàmica de la Terra i de l’Oceà, Faculty of Earth Sciences, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Brian V. Brown
- grid.243983.70000 0001 2302 4724Entomology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, 90007 Los Angeles, CA USA
| | - Nyi Nyi Aung
- grid.440502.70000 0001 1118 1335Myanmar Geosciences Society, c/o Department of Geology, University of Yangon, 11041 Yangon, Myanmar ,Peretti Museum Foundation, Baumschulweg 13, 6045 Meggen, Switzerland
| | - Adolf M. Peretti
- Peretti Museum Foundation, Baumschulweg 13, 6045 Meggen, Switzerland ,GRS Gemresearch Swisslab AG, Baumschulweg 13, 6045 Meggen, Switzerland
| |
Collapse
|
4
|
Watson C. Pressure to publish is 'fuelling illegal practices in palaeontology'. Nature 2022:10.1038/d41586-022-03745-x. [PMID: 36385286 DOI: 10.1038/d41586-022-03745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
An exceptional fossil lizard from the Jurassic period. Nature 2022; 611:36-37. [DOI: 10.1038/d41586-022-03364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Synchrotron tomography of a stem lizard elucidates early squamate anatomy. Nature 2022; 611:99-104. [DOI: 10.1038/s41586-022-05332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022]
|
7
|
Yamashita M, Tsuihiji T. The relationship between hard and soft tissue structures of the eye in extant lizards. J Morphol 2022; 283:1182-1199. [PMID: 35833614 PMCID: PMC9545706 DOI: 10.1002/jmor.21495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
Abstract
The sizes of the eye structures, such as the lens diameter and the axial length, are important factors for the visual performance and are considered to be related to the mode of life. Although the size of these soft structures cannot be directly observed in fossil taxa, such information may be obtained from measuring size and morphology of the bony scleral ossicle ring, which is present in the eyes of extant saurospids, excluding crocodiles and snakes, and is variously preserved in fossil taxa. However, there have been only a few studies investigating the relationships between the size, the scleral ossicle ring, and soft structures of the eye. We investigated such relationships among the eye structures in extant Squamata, to establish the basis for inferring the size of the soft structures in the eye in fossil squamates. Three‐dimensional morphological data on the eye and head region of 59 lizard species covering most major clades were collected using micro‐computed tomography scanners. Strong correlations were found between the internal and external diameters of the scleral ossicle ring and soft structures. The tight correlations found here will allow reliable estimations of the sizes of soft structures and inferences on the visual performance and mode of life in fossil squamates, based on the diameters of their preserved scleral ossicle rings. Furthermore, the comparison of the allometric relationships between structures in squamates eyes with those in avian eyes suggest the possibility that the similarities of these structures closely reflect the mechanism of accommodation. The sizes of the eye structures are important factors for the visual performance. Strong correlations were found between the scleral ossicle ring and soft structures in extant squamates eyes. These correlations will allow reliable estimations of soft structures and inferences on the visual performance and mode of life in fossil squamates.
Collapse
Affiliation(s)
- Momo Yamashita
- Center for Collections, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki, 305-0005, Japan.,Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Takanobu Tsuihiji
- Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki, 305-0005, Japan.,Department of Earth and Planetary Science, The University of Tokyo, 7-3-1, Hongo, Bunkyoku, Tokyo, 113-0033, Japan
| |
Collapse
|
8
|
Bicknell RD, Smith PM, Brougham T, Bevitt JJ. An earliest Triassic age for Tasmaniolimulus and comments on synchrotron tomography of Gondwanan horseshoe crabs. PeerJ 2022; 10:e13326. [PMID: 35480564 PMCID: PMC9037155 DOI: 10.7717/peerj.13326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/02/2022] [Indexed: 01/13/2023] Open
Abstract
Constraining the timing of morphological innovations within xiphosurid evolution is central for understanding when and how such a long-lived group exploited vacant ecological niches over the majority of the Phanerozoic. To expand the knowledge on the evolution of select xiphosurid forms, we reconsider the four Australian taxa: Austrolimulus fletcheri, Dubbolimulus peetae, Tasmaniolimulus patersoni, and Victalimulus mcqueeni. In revisiting these taxa, we determine that, contrary to previous suggestion, T. patersoni arose after the Permian and the origin of over-developed genal spine structures within Austrolimulidae is exclusive to the Triassic. To increase the availability of morphological data pertaining to these unique forms, we also examined the holotypes of the four xiphosurids using synchrotron radiation X-ray tomography (SRXT). Such non-destructive, in situ imaging of palaeontological specimens can aid in the identification of novel morphological data by obviating the need for potentially extensive preparation of fossils from the surrounding rock matrix. This is particularly important for rare and/or delicate holotypes. Here, SRXT was used to emphasize A. fletcheri and T. patersoni cardiac lobe morphologies and illustrate aspects of the V. mcqueeni thoracetronic doublure, appendage impressions, and moveable spine notches. Unfortunately, the strongly compacted D. peetae precluded the identification of any internal structures, but appendage impressions were observed. The application of computational fluid dynamics to high-resolution 3D reconstructions are proposed to understand the hydrodynamic properties of divergent genal spine morphologies of austrolimulid xiphosurids.
Collapse
Affiliation(s)
| | - Patrick M. Smith
- Australian Museum Research Institute, Sydney, Australia
- Macquarie University, Sydney, Australia
| | | | - Joseph J. Bevitt
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| |
Collapse
|
9
|
Demuth OE, Benito J, Tschopp E, Lautenschlager S, Mallison H, Heeb N, Field DJ. Topology-Based Three-Dimensional Reconstruction of Delicate Skeletal Fossil Remains and the Quantification of Their Taphonomic Deformation. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.828006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Taphonomic and diagenetic processes inevitably distort the original skeletal morphology of fossil vertebrate remains. Key aspects of palaeobiological datasets may be directly impacted by such morphological deformation, such as taxonomic diagnoses and phylogenetic hypotheses, interpretations of the shape and orientation of anatomical structures, and assessments of interspecific and intraspecific variation. In order to overcome these ubiquitous challenges we present a novel reconstruction workflow combining retopology and retrodeformation, allowing the original morphology of both symmetrically and asymmetrically damaged areas of fossils to be reconstructed. As case studies, we present idealised three-dimensional reconstructions of the sternum of the crownward stem-bird Ichthyornis dispar, and cervical vertebrae of the diplodocid sauropod Galeamopus pabsti. Multiple Ichthyornis sterna were combined into a single, idealised composite representation through superimposition and alignment of retopologised models, and this composite was subsequently retrodeformed. The Galeamopus vertebrae were individually retrodeformed and symmetrised. Our workflow enabled us to quantify deformation of individual specimens with respect to our reconstructions, and to characterise global and local taphonomic deformation. Our workflow can be integrated with geometric morphometric approaches to enable quantitative morphological comparisons among multiple specimens, as well as quantitative interpolation of “mediotypes” of serially homologous elements such as missing vertebrae, haemal arches, or ribs.
Collapse
|
10
|
Čerňanský A, Stanley EL, Daza JD, Bolet A, Arias JS, Bauer AM, Vidal-García M, Bevitt JJ, Peretti AM, Aung NN, Evans SE. A new Early Cretaceous lizard in Myanmar amber with exceptionally preserved integument. Sci Rep 2022; 12:1660. [PMID: 35102237 PMCID: PMC8803969 DOI: 10.1038/s41598-022-05735-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
We here report on a well-preserved juvenile lizard specimen in Albian amber (ca. 110 mya) from the Hkamti site (Myanmar). This new taxon is represented by an articulated skull and the anterior portion of the trunk, including the pectoral girdle and forelimbs. The scleral ossicles and eyelid are also visible, and the specimen exhibits pristine detail of the integument (of both head and body). In a combined molecular and morphological analysis, it was consistently recovered as a scincoid lizard (Scinciformata), as sister to Tepexisaurus + Xantusiidae. However, the phylogenetic position of the new taxon should be interpreted with caution as the holotype is an immature individual. We explored the possibility of miscoding ontogenetically variable characters by running alternative analyses in which these characters were scored as missing data for our taxon. With the exception of one tree, in which it was sister to Amphisbaenia, the specimen was recovered as a Pan-xantusiid. Moreover, we cannot rule out the possibility that it represents a separate lineage of uncertain phylogenetic position, as it is the case for many Jurassic and Cretaceous taxa. Nonetheless, this fossil offers a rare opportunity to glimpse the external appearance of one group of lizards during the Early Cretaceous.
Collapse
Affiliation(s)
- Andrej Čerňanský
- Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, 84215, Bratislava, Slovakia.
| | - Edward L Stanley
- Department of Natural History, Florida Museum of Natural History, Gainesville, FL, USA
| | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Arnau Bolet
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - J Salvador Arias
- Unidad Ejecutora Lillo (CONICET, Fundación Miguel Lillo), San Miguel de Tucumán, Argentina
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, USA
| | - Marta Vidal-García
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Joseph J Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - Adolf M Peretti
- GRS Gemresearch Swisslab AG, Baumschulweg 13, 6045, Meggen, Switzerland
- Peretti Museum Foundation, Baumschulweg 13, 6045, Meggen, Switzerland
| | - Nyi Nyi Aung
- Peretti Museum Foundation, Baumschulweg 13, 6045, Meggen, Switzerland
- Myanmar Geosciences Society, c/o Department of Geology, University of Yangon, 11041, Yangon, Myanmar
| | - Susan E Evans
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
11
|
Smith KT. Paleontology: It's a bird, it's a plane, it's Oculudentavis! Curr Biol 2021; 31:R950-R952. [PMID: 34375597 DOI: 10.1016/j.cub.2021.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Few animals have experienced such jarring taxonomic whiplash as has Oculudentavis, a tiny tetrapod preserved in amber. A new specimen of this perplexing lineage now shows that it is a lizard unlike any ever discovered.
Collapse
Affiliation(s)
- Krister T Smith
- Department of Messel Research and Mammalogy, Senckenberg Research Institute, and Faculty of Biological Sciences, Goethe University, 60325 Frankfurt am Main, Germany.
| |
Collapse
|