1
|
Zhao J, Lammers NC, Alamos S, Kim YJ, Martini G, Garcia HG. Optogenetic dissection of transcriptional repression in a multicellular organism. Nat Commun 2024; 15:9263. [PMID: 39461978 PMCID: PMC11513125 DOI: 10.1038/s41467-024-53539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Transcriptional control is fundamental to cellular function. However, despite knowing that transcription factors can repress or activate specific genes, how these functions are implemented at the molecular level has remained elusive, particularly in the endogenous context of developing animals. Here, we combine optogenetics, single-cell live-imaging, and mathematical modeling to study how a zinc-finger repressor, Knirps, induces switch-like transitions into long-lived quiescent states. Using optogenetics, we demonstrate that repression is rapidly reversible (~1 min) and memoryless. Furthermore, we show that the repressor acts by decreasing the frequency of transcriptional bursts in a manner consistent with an equilibrium binding model. Our results provide a quantitative framework for dissecting the in vivo biochemistry of eukaryotic transcriptional regulation.
Collapse
Affiliation(s)
- Jiaxi Zhao
- Department of Physics, University of California, Berkeley, CA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicholas C Lammers
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Simon Alamos
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, LBNL, Berkeley, CA, USA
| | - Yang Joon Kim
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Gabriella Martini
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Hernan G Garcia
- Department of Physics, University of California, Berkeley, CA, USA.
- Biophysics Graduate Group, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
3
|
Ho EK, Oatman HR, McFann SE, Yang L, Johnson HE, Shvartsman SY, Toettcher JE. Dynamics of an incoherent feedforward loop drive ERK-dependent pattern formation in the early Drosophila embryo. Development 2023; 150:dev201818. [PMID: 37602510 PMCID: PMC10482391 DOI: 10.1242/dev.201818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Positional information in development often manifests as stripes of gene expression, but how stripes form remains incompletely understood. Here, we use optogenetics and live-cell biosensors to investigate the posterior brachyenteron (byn) stripe in early Drosophila embryos. This stripe depends on interpretation of an upstream ERK activity gradient and the expression of two target genes, tailless (tll) and huckebein (hkb), that exert antagonistic control over byn. We find that high or low doses of ERK signaling produce transient or sustained byn expression, respectively. Although tll transcription is always rapidly induced, hkb converts graded ERK inputs into a variable time delay. Nuclei thus interpret ERK amplitude through the relative timing of tll and hkb transcription. Antagonistic regulatory paths acting on different timescales are hallmarks of an incoherent feedforward loop, which is sufficient to explain byn dynamics and adds temporal complexity to the steady-state model of byn stripe formation. We further show that 'blurring' of an all-or-none stimulus through intracellular diffusion non-locally produces a byn stripe. Overall, we provide a blueprint for using optogenetics to dissect developmental signal interpretation in space and time.
Collapse
Affiliation(s)
- Emily K. Ho
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Harrison R. Oatman
- Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sarah E. McFann
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Liu Yang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Heath E. Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y. Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Ho EK, Oatman HR, McFann SE, Yang L, Johnson HE, Shvartsman SY, Toettcher JE. Dynamics of an incoherent feedforward loop drive ERK-dependent pattern formation in the early Drosophila embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531972. [PMID: 36945584 PMCID: PMC10028984 DOI: 10.1101/2023.03.09.531972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Positional information in developing tissues often takes the form of stripes of gene expression that mark the boundaries of a particular cell type or morphogenetic process. How stripes form is still in many cases poorly understood. Here we use optogenetics and live-cell biosensors to investigate one such pattern: the posterior stripe of brachyenteron (byn) expression in the early Drosophila embryo. This byn stripe depends on interpretation of an upstream signal - a gradient of ERK kinase activity - and the expression of two target genes tailless (tll) and huckebein (hkb) that exert antagonistic control over byn . We find that high or low doses of ERK signaling produce either transient or sustained byn expression, respectively. These ERK stimuli also regulate tll and hkb expression with distinct dynamics: tll transcription is rapidly induced under both low and high stimuli, whereas hkb transcription converts graded ERK inputs into an output switch with a variable time delay. Antagonistic regulatory paths acting on different timescales are hallmarks of an incoherent feedforward loop architecture, which is sufficient to explain transient or sustained byn dynamics and adds temporal complexity to the steady-state model of byn stripe formation. We further show that an all-or-none stimulus can be 'blurred' through intracellular diffusion to non-locally produce a stripe of byn gene expression. Overall, our study provides a blueprint for using optogenetic inputs to dissect developmental signal interpretation in space and time.
Collapse
Affiliation(s)
- Emily K Ho
- Department of Molecular Biology Princeton University, Princeton NJ 08544
| | - Harrison R Oatman
- Program in Quantitative and Computational Biology Princeton University, Princeton NJ 08544
| | - Sarah E McFann
- Department of Chemical & Biological Engineering Princeton University, Princeton NJ 08544
| | - Liu Yang
- Lewis Sigler Institute for Integrative Genomics Princeton University, Princeton NJ 08544
| | - Heath E Johnson
- Department of Molecular Biology Princeton University, Princeton NJ 08544
| | - Stanislav Y Shvartsman
- Department of Molecular Biology Princeton University, Princeton NJ 08544
- Lewis Sigler Institute for Integrative Genomics Princeton University, Princeton NJ 08544
- Flatiron Institute, New York, NY 10010
| | - Jared E Toettcher
- Department of Molecular Biology Princeton University, Princeton NJ 08544
| |
Collapse
|
5
|
Treen N, Chavarria E, Weaver CJ, Brangwynne CP, Levine M. An FGF timer for zygotic genome activation. Genes Dev 2023; 37:80-85. [PMID: 36801820 PMCID: PMC10069452 DOI: 10.1101/gad.350164.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Zygotic genome activation has been extensively studied in a variety of systems including flies, frogs, and mammals. However, there is comparatively little known about the precise timing of gene induction during the earliest phases of embryogenesis. Here we used high-resolution in situ detection methods, along with genetic and experimental manipulations, to study the timing of zygotic activation in the simple model chordate Ciona with minute-scale temporal precision. We found that two Prdm1 homologs in Ciona are the earliest genes that respond to FGF signaling. We present evidence for a FGF timing mechanism that is driven by ERK-mediated derepression of the ERF repressor. Depletion of ERF results in ectopic activation of FGF target genes throughout the embryo. A highlight of this timer is the sharp transition in FGF responsiveness between the eight- and 16-cell stages of development. We propose that this timer is an innovation of chordates that is also used by vertebrates.
Collapse
Affiliation(s)
- Nicholas Treen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA;
| | - Emily Chavarria
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Claire J Weaver
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Clifford P Brangwynne
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
6
|
Zhang L, Perez-Romero C, Dostatni N, Fradin C. Using FCS to accurately measure protein concentration in the presence of noise and photobleaching. Biophys J 2021; 120:4230-4241. [PMID: 34242593 PMCID: PMC8516637 DOI: 10.1016/j.bpj.2021.06.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Quantitative cell biology requires precise and accurate concentration measurements, resolved both in space and time. Fluorescence correlation spectroscopy (FCS) has been held as a promising technique to perform such measurements because the fluorescence fluctuations it relies on are directly dependent on the absolute number of fluorophores in the detection volume. However, the most interesting applications are in cells, where autofluorescence and confinement result in strong background noise and important levels of photobleaching. Both noise and photobleaching introduce systematic bias in FCS concentration measurements and need to be corrected for. Here, we propose to make use of the photobleaching inevitably occurring in confined environments to perform series of FCS measurements at different fluorophore concentration, which we show allows a precise in situ measurement of both background noise and molecular brightness. Such a measurement can then be used as a calibration to transform confocal intensity images into concentration maps. The power of this approach is first illustrated with in vitro measurements using different dye solutions, then its applicability for in vivo measurements is demonstrated in Drosophila embryos for a model nuclear protein and for two morphogens, Bicoid and Capicua.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Carmina Perez-Romero
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Institut Curie, PSL University, CNRS, Paris, France; Nuclear Dynamics, Sorbonne University, Paris, France
| | - Nathalie Dostatni
- Institut Curie, PSL University, CNRS, Paris, France; Nuclear Dynamics, Sorbonne University, Paris, France
| | - Cécile Fradin
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
7
|
Dutta S, Patel AL, Keenan SE, Shvartsman SY. From complex datasets to predictive models of embryonic development. NATURE COMPUTATIONAL SCIENCE 2021; 1:516-520. [PMID: 38217248 DOI: 10.1038/s43588-021-00110-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/12/2021] [Indexed: 01/15/2024]
Abstract
Modern studies of embryogenesis are increasingly quantitative, powered by rapid advances in imaging, sequencing and genome manipulation technologies. Deriving mechanistic insights from the complex datasets generated by these new tools requires systematic approaches for data-driven analysis of the underlying developmental processes. Here, we use data from our work on signal-dependent gene repression in the Drosophila embryo to illustrate how computational models can compactly summarize quantitative results of live imaging, chromatin immunoprecipitation and optogenetic perturbation experiments. The presented computational approach is ideally suited for integrating rapidly accumulating quantitative data and for guiding future studies of embryogenesis.
Collapse
Affiliation(s)
- Sayantan Dutta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Aleena L Patel
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Shannon E Keenan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Center of Computational Biology, Flatiron Institute, New York, NY, USA.
| |
Collapse
|