1
|
Cheng S. Distinct mechanisms and functions of episodic memory. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230411. [PMID: 39278239 PMCID: PMC11482257 DOI: 10.1098/rstb.2023.0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 09/18/2024] Open
Abstract
The concept of episodic memory (EM) faces significant challenges by two claims: EM might not be a distinct memory system, and EM might be an epiphenomenon of a more general capacity for mental time travel (MTT). Nevertheless, the observations leading to these arguments do not preclude the existence of a mechanically and functionally distinct EM system. First, modular systems, like cognition, can have distinct subsystems that may not be distinguishable in the system's final output. EM could be such a subsystem, even though its effects may be difficult to distinguish from those of other subsystems. Second, EM could have a distinct and consistent low-level function, which is used in diverse high-level functions such as MTT. This article introduces the scenario construction framework, proposing that EM crucially rests on memory traces containing the gist of an episodic experience. During retrieval, EM traces trigger the reconstruction of semantic representations, which were active during the remembered episode, and are further enriched with semantic information, to generate a scenario of the past experience. This conceptualization of EM is consistent with studies on the neural basis of EM and resolves the two challenges while retaining the key properties associated with EM. This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- Sen Cheng
- Institute for Neural Computation Faculty of Computer Science, Ruhr University Bochum, Bochum44780, Germany
| |
Collapse
|
2
|
Zhou J, Wang NN, Huang XY, Su R, Li H, Ma HL, Liu M, Zhang DL. High-altitude exposure leads to increased modularity of brain functional network with the increased occupation of attention resources in early processing of visual working memory. Cogn Neurodyn 2024; 18:1-20. [PMID: 39555295 PMCID: PMC11564581 DOI: 10.1007/s11571-024-10091-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 11/19/2024] Open
Abstract
Working memory is a complex cognitive system that temporarily maintains purpose-relevant information during human cognition performance. Working memory performance has also been found to be sensitive to high-altitude exposure. This study used a multilevel change detection task combined with Electroencephalogram data to explore the mechanism of working memory change from high-altitude exposure. When compared with the sea-level population, the performance of the change detection task with 5 memory load levels was measured in the Han population living in high-altitude areas, using the event-related potential analysis and task-related connectivity network analysis. The topological analysis of the brain functional network showed that the normalized modularity of the high-altitude group was higher in the memory maintenance phase. Event-related Potential analysis showed that the peak latencies of P1 and N1 components of the high-altitude group were significantly shorter in the occipital region, which represents a greater attentional bias in visual early processing. Under the condition of high memory loads, the high-altitude group had a larger negative peak in N2 amplitude compared to the low-altitude group, which may imply more conscious processing in visual working memory. The above results revealed that the visual working memory change from high-altitude exposure might be derived from the attentional bias and the more conscious processing in the early processing stage of visual input, which is accompanied by the increase of the modularity of the brain functional network. This may imply that the attentional bias in the early processing stages have been influenced by the increased modularity of the functional brain networks induced by high-altitude exposure. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10091-3.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of
Education, South China Normal University, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and
Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Nian-Nian Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of
Education, South China Normal University, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and
Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Plateau Brain Science Research Center, Tibet University, Lhasa, 850000 China
| | - Xiao-Yan Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of
Education, South China Normal University, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and
Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rui Su
- Plateau Brain Science Research Center, Tibet University, Lhasa, 850000 China
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University, Lhasa, 850000 China
| | - Hai-Lin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa, 850000 China
| | - Ming Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of
Education, South China Normal University, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and
Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Plateau Brain Science Research Center, South China Normal University, Guangzhou, 510631 China
| | - De-Long Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of
Education, South China Normal University, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and
Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Plateau Brain Science Research Center, South China Normal University, Guangzhou, 510631 China
- Laboratory of Neuroeconomics, Guangzhou Huashang College, Guangzhou, China
| |
Collapse
|
3
|
Schmidig FJ, Ruch S, Henke K. Episodic long-term memory formation during slow-wave sleep. eLife 2024; 12:RP89601. [PMID: 38661727 PMCID: PMC11045222 DOI: 10.7554/elife.89601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words' linguistic processing raised neural complexity. The words' semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.
Collapse
Affiliation(s)
| | - Simon Ruch
- Institute of Psychology, University of BernBernSwitzerland
- Faculty of Psychology, UniDistance SuisseBrigSwitzerland
| | | |
Collapse
|
4
|
Henke K, Ruch S. Unconscious processing effects manifest only if conscious processing is excluded. Cogn Neurosci 2024; 15:73-74. [PMID: 38666549 DOI: 10.1080/17588928.2024.2343658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 05/31/2024]
Abstract
In their discussion paper Steinkrauss and Slotnick argue against a role for the hippocampus in unconscious memory formation and retrieval. Unfortunately, they omitted highly relevant evidence that supports a role for the hippocampus in unconscious memory. They criticize four articles, two from our laboratory, pointing out long-known confounds like residual consciousness. We uncover these reproaches as untrue allegations. In our own interest, we prevented conscious mnemonic processing because reliable unconscious memory effects manifest only if consciousness is completely excluded, and because we always knew that residual consciousness would be our Achilles heel for the proponents of the 'explicit memory dogma.'
Collapse
Affiliation(s)
- Katharina Henke
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Simon Ruch
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland
| |
Collapse
|
5
|
Thakral PP, Cutting ER, Lawless KE. The dead salmon strikes again: Reports of unconscious processing in the hippocampus may reflect Type-I error. Cogn Neurosci 2024; 15:79-82. [PMID: 38647209 DOI: 10.1080/17588928.2024.2343667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Steinkrauss and Slotnick (2024) reviewed neuroimaging studies linking the hippocampus with implicit memory. They conclude that there is no convincing evidence that the hippocampus is associated with implicit memory because prior studies are confounded by explicit memory (among other factors). Here, we ask a different yet equally important question: do reports of unconscious hippocampal activity reflect a Type-I error (i.e. a false positive)? We find that 39% of studies linking the hippocampus with implicit memory (7 of 18) do not report correcting for multiple comparisons. These results indicate that many unconscious hippocampal effects may reflect a Type-I error.
Collapse
Affiliation(s)
- Preston P Thakral
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
- Department of Psychology, Smith College, Northampton, MA, USA
| | - Elizabeth R Cutting
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| | - Kiera E Lawless
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
6
|
Steinkrauss AC, Slotnick SD. Is implicit memory associated with the hippocampus? Cogn Neurosci 2024; 15:56-70. [PMID: 38368598 DOI: 10.1080/17588928.2024.2315816] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
According to the traditional memory-systems view, the hippocampus is critical during explicit (conscious) long-term memory, whereas other brain regions support implicit (nonconscious) memory. In the last two decades, some fMRI studies have reported hippocampal activity during implicit memory tasks. The aim of the present discussion paper was to identify whether any implicit memory fMRI studies have provided convincing evidence that the hippocampus is associated with nonconscious processes without being confounded by conscious processes. Experimental protocol and analysis parameters included the stimulus type(s), task(s), measures of subjective awareness, explicit memory accuracy, the relevant fMRI contrast(s) or analysis, and confound(s). A systematic review was conducted to identify implicit memory studies that reported fMRI activity in the hippocampus. After applying exclusion criteria, 13 articles remained for analysis. We found that there were no implicit memory fMRI studies where subjective awareness was absent, explicit memory performance was at chance, and there were no confounds that could have driven the observed hippocampal activity. The confounds included explicit memory (including false memory), imbalanced attentional states between conditions (yielding activation of the default-mode network), imbalanced stimuli between conditions, and differential novelty. As such, not a single fMRI study provided convincing evidence that implicit memory was associated with the hippocampus. Neuropsychological evidence was also considered, and implicit memory deficits were caused by factors known to disrupt brain regions beyond the hippocampus, such that the behavioral effects could not be attributed to this region. The present results indicate that implicit memory is not associated with the hippocampus.
Collapse
Affiliation(s)
- Ashley C Steinkrauss
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| | - Scott D Slotnick
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
7
|
Hannula DE, Minor GN, Slabbekoorn D. Conscious awareness and memory systems in the brain. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1648. [PMID: 37012615 DOI: 10.1002/wcs.1648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/06/2023] [Accepted: 03/05/2023] [Indexed: 04/05/2023]
Abstract
The term "memory" typically refers to conscious retrieval of events and experiences from our past, but experience can also change our behaviour without corresponding awareness of the learning process or the associated outcome. Based primarily on early neuropsychological work, theoretical perspectives have distinguished between conscious memory, said to depend critically on structures in the medial temporal lobe (MTL), and a collection of performance-based memories that do not. The most influential of these memory systems perspectives, the declarative memory theory, continues to be a mainstay of scientific work today despite mounting evidence suggesting that contributions of MTL structures go beyond the kinds or types of memory that can be explicitly reported. Consistent with these reports, more recent perspectives have focused increasingly on the processing operations supported by particular brain regions and the qualities or characteristics of resulting representations whether memory is expressed with or without awareness. These alternatives to the standard model generally converge on two key points. First, the hippocampus is critical for relational memory binding and representation even without awareness and, second, there may be little difference between some types of priming and explicit, familiarity-based recognition. Here, we examine the evolution of memory systems perspectives and critically evaluate scientific evidence that has challenged the status quo. Along the way, we highlight some of the challenges that researchers encounter in the context of this work, which can be contentious, and describe innovative methods that have been used to examine unconscious memory in the lab. This article is categorized under: Psychology > Memory Psychology > Theory and Methods Philosophy > Consciousness.
Collapse
|
8
|
Zher-Wen, Yu R. Unconscious integration: Current evidence for integrative processing under subliminal conditions. Br J Psychol 2023; 114:430-456. [PMID: 36689339 DOI: 10.1111/bjop.12631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
Integrative processing is traditionally believed to be dependent on consciousness. While earlier studies within the last decade reported many types of integration under subliminal conditions (i.e. without perceptual awareness), these findings are widely challenged recently. This review evaluates the current evidence for 10 types of subliminal integration that are widely studied: arithmetic processing, object-context integration, multi-word processing, same-different processing, multisensory integration and 5 different types of associative learning. Potential methodological issues concerning awareness measures are also taken into account. It is concluded that while there is currently no reliable evidence for subliminal integration, this does not necessarily refute 'unconscious' integration defined through non-subliminal (e.g. implicit) approaches.
Collapse
Affiliation(s)
- Zher-Wen
- Department of Management, Hong Kong Baptist University, Hong Kong, China.,Department of Psychology, National University of Singapore, Singapore City, Singapore
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
9
|
Budson AE, Richman KA, Kensinger EA. Consciousness as a Memory System. Cogn Behav Neurol 2022; 35:263-297. [PMID: 36178498 PMCID: PMC9708083 DOI: 10.1097/wnn.0000000000000319] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 01/31/2023]
Abstract
We suggest that there is confusion between why consciousness developed and what additional functions, through continued evolution, it has co-opted. Consider episodic memory. If we believe that episodic memory evolved solely to accurately represent past events, it seems like a terrible system-prone to forgetting and false memories. However, if we believe that episodic memory developed to flexibly and creatively combine and rearrange memories of prior events in order to plan for the future, then it is quite a good system. We argue that consciousness originally developed as part of the episodic memory system-quite likely the part needed to accomplish that flexible recombining of information. We posit further that consciousness was subsequently co-opted to produce other functions that are not directly relevant to memory per se, such as problem-solving, abstract thinking, and language. We suggest that this theory is compatible with many phenomena, such as the slow speed and the after-the-fact order of consciousness, that cannot be explained well by other theories. We believe that our theory may have profound implications for understanding intentional action and consciousness in general. Moreover, we suggest that episodic memory and its associated memory systems of sensory, working, and semantic memory as a whole ought to be considered together as the conscious memory system in that they, together, give rise to the phenomenon of consciousness. Lastly, we suggest that the cerebral cortex is the part of the brain that makes consciousness possible, and that every cortical region contributes to this conscious memory system.
Collapse
Affiliation(s)
- Andrew E. Budson
- Center for Translational Cognitive Neuroscience, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
- Alzheimer’s Disease Research Center, Boston University, Boston, Massachusetts
| | - Kenneth A. Richman
- Center for Health Humanities, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts
| | | |
Collapse
|
10
|
Pacozzi L, Knüsel L, Ruch S, Henke K. Inverse forgetting in unconscious episodic memory. Sci Rep 2022; 12:20595. [PMID: 36446829 PMCID: PMC9709067 DOI: 10.1038/s41598-022-25100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Forming memories of experienced episodes calls upon the episodic memory system. Episodic encoding may proceed with and without awareness of episodes. While up to 60% of consciously encoded episodes are forgotten after 10 h, the fate of unconsciously encoded episodes is unknown. Here we track over 10 h, which are filled with sleep or daytime activities, the retention of unconsciously and consciously experienced episodes. The episodes were displayed in cartoon clips that were presented weakly and strongly masked for conscious and unconscious encoding, respectively. Clip retention was tested for distinct clips directly after encoding, 3 min and 10 h after encoding using a forced-choice test that demands deliberate responses in both consciousness conditions. When encoding was conscious, retrieval accuracy decreased by 25% from 3 min to 10 h, irrespective of sleep or wakefulness. When encoding was unconscious, retrieval accuracy increased from 3 min to 10 h and depended on sleep. Hence, opposite to the classic forgetting curve, unconsciously acquired episodic memories strengthen over time and hinge on sleep on the day of learning to gain influence over human behavior.
Collapse
Affiliation(s)
- Luca Pacozzi
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland.
| | - Leona Knüsel
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland
| | - Simon Ruch
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, 72076, Tübingen, Germany
| | - Katharina Henke
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
11
|
Abstract
The extent to which we are affected by perceptual input of which we are unaware is widely debated. By measuring neural responses to sensory stimulation, neuroscientific data could complement behavioral results with valuable evidence. Here we review neuroscientific findings of processing of high-level information, as well as interactions with attention and memory. Although the results are mixed, we find initial support for processing object categories and words, possibly to the semantic level, as well as emotional expressions. Robust neural evidence for face individuation and integration of sentences or scenes is lacking. Attention affects the processing of stimuli that are not consciously perceived, and such stimuli may exogenously but not endogenously capture attention when relevant, and be maintained in memory over time. Sources of inconsistency in the literature include variability in control for awareness as well as individual differences, calling for future studies that adopt stricter measures of awareness and probe multiple processes within subjects.
Collapse
Affiliation(s)
- Liad Mudrik
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel;
| | - Leon Y Deouell
- Department of Psychology and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
12
|
Robertson EM. Memory leaks: information shared across memory systems. Trends Cogn Sci 2022; 26:544-554. [DOI: 10.1016/j.tics.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
13
|
Ross TW, Easton A. The Hippocampal Horizon: Constructing and Segmenting Experience for Episodic Memory. Neurosci Biobehav Rev 2021; 132:181-196. [PMID: 34826509 DOI: 10.1016/j.neubiorev.2021.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
How do we recollect specific events that have occurred during continuous ongoing experience? There is converging evidence from non-human animals that spatially modulated cellular activity of the hippocampal formation supports the construction of ongoing events. On the other hand, recent human oriented event cognition models have outlined that our experience is segmented into discrete units, and that such segmentation can operate on shorter or longer timescales. Here, we describe a unification of how these dynamic physiological mechanisms of the hippocampus relate to ongoing externally and internally driven event segmentation, facilitating the demarcation of specific moments during experience. Our cross-species interdisciplinary approach offers a novel perspective in the way we construct and remember specific events, leading to the generation of many new hypotheses for future research.
Collapse
Affiliation(s)
- T W Ross
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Centre for Learning and Memory Processes, Durham University, United Kingdom.
| | - A Easton
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Centre for Learning and Memory Processes, Durham University, United Kingdom
| |
Collapse
|