1
|
Kolawole OU, Bensinger E, Wong J, Rinella N, Foote KG, Zhou H, Wang RK, Duncan JL, Roorda A. High Resolution Imaging and Fixation Analysis of Eccentric Preferred Retinal Loci in Macular Diseases. Invest Ophthalmol Vis Sci 2025; 66:18. [PMID: 40338180 PMCID: PMC12068526 DOI: 10.1167/iovs.66.5.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Purpose The purpose of this study was to characterize the preferred retinal locus (PRL) structure and fixational eye movements in eyes with macular atrophy. Methods Four participants (1 each with macular atrophy due to congenital rubella, Best macular dystrophy, cuticular drusen with macular atrophy, and Stargardt disease) were studied using adaptive optics scanning light ophthalmoscopy (AOSLO), optical coherence tomography (OCT), OCT angiography (OCT-A), and microperimetry. Imaging sessions were repeated in three of the four participants. PRL and fixation stability were measured with AOSLO. Fixation stability was compared with healthy participants and participants with RHO- and USH2A-related retinitis pigmentosa (RP). Results The PRL in participants with eccentric fixation was 0.44 to 1.92 degrees from the anatomic fovea and visual acuity was 20/40 or better. Cones at the PRL were not visible in confocal images, despite normal-appearing and more sensitive cones at greater eccentricities. OCT at the PRL showed intact external limiting membranes but hyporeflective and disrupted inner-segment outer-segment junctions. Fixation stability in participants with eccentric PRLs was no worse than participants with RP, all with foveal PRLs. The eccentric PRL group and the USH2A group with worse visual acuity (20/30 to 20/50) had fixation stabilities that were worse than the healthy controls. Conclusions Participants adopt eccentric PRLs with hyporeflective cones and reduced sensitivity despite more sensitive and normal-appearing cones at greater eccentricities, suggesting that foveal proximity is prioritized over cone integrity in establishing a PRL. Fixation stability was similar among the four participants with eccentric fixation and those with RP, indicating that small shifts in the PRL from the anatomic fovea in our participants do not make fixation less stable.
Collapse
Affiliation(s)
- Olubayo U. Kolawole
- Wayne and Gladys Valley Center for Vision, Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States
| | - Ethan Bensinger
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
| | - Jessica Wong
- Wayne and Gladys Valley Center for Vision, Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States
| | - Nicholas Rinella
- Wayne and Gladys Valley Center for Vision, Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States
| | - Katharina G. Foote
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
| | - Hao Zhou
- Department of Bioengineering, University of Washington, Seattle, Washington, United States
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, United States
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jacque L. Duncan
- Wayne and Gladys Valley Center for Vision, Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
| |
Collapse
|
2
|
Nghiem TAE, Witten JL, Dufour O, Harmening WM, Azeredo da Silveira R. Fixational eye movements as active sensation for high visual acuity. Proc Natl Acad Sci U S A 2025; 122:e2416266122. [PMID: 39903111 PMCID: PMC11831129 DOI: 10.1073/pnas.2416266122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025] Open
Abstract
Perception and action are inherently entangled: our world view is shaped by how we explore our environment through complex and variable self-motion. Even when fixating stable stimuli, our eyes undergo small, involuntary movements. Fixational eye movements (FEM) render a stable world jittery on our retinae, which can be expected to harm neural coding. Yet, empirical evidence suggests that FEM help rather than harm human perception of fine detail. Here, we elucidate this paradox by uncovering under which conditions FEM improve or impair retinal coding and human acuity. We combine theory and experiment: model accuracy is directly compared to that of healthy human subjects in a visual acuity task. Acuity is modeled by applying an ideal Bayesian classifier to simulations of retinal spiking activity in the presence of FEM. In addition, empirical FEM are monitored using high-resolution eye-tracking by an adaptive optics scanning laser ophthalmoscope. FEM introduce variability in retinal ganglion cell activity, but they also effectively preprocess inputs to facilitate retinal information encoding. Based on an interplay of these mechanisms, our model predicts a relation between visual acuity, FEM amplitude, and single-trial stimulus size that quantitatively accounts for experimental observations and captures the beneficial effect of FEM. Moreover, we observe that while human subjects' FEM statistics vary with stimulus size, our model suggests that subjects' FEM amplitude remains within a near-optimal range, where acuity is enhanced compared to much larger or smaller amplitudes. Overall, our findings indicate that perception benefits from action even at the fine spatiotemporal scale of FEM.
Collapse
Affiliation(s)
- Trang-Anh E. Nghiem
- Département de Physique, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Université de Paris, Paris75005, France
- Institute of Molecular and Clinical Ophthalmology Basel, Basel4031, Switzerland
| | - Jenny L. Witten
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn53127, Germany
| | - Oscar Dufour
- Département de Physique, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Université de Paris, Paris75005, France
- Institute of Molecular and Clinical Ophthalmology Basel, Basel4031, Switzerland
| | - Wolf M. Harmening
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn53127, Germany
| | - Rava Azeredo da Silveira
- Département de Physique, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Université de Paris, Paris75005, France
- Institute of Molecular and Clinical Ophthalmology Basel, Basel4031, Switzerland
- Faculty of Science, University of Basel, Basel4056, Switzerland
- Department of Economics, University of Zurich, Zurich8001, Switzerland
| |
Collapse
|
3
|
Oquendo PL, Wright T, Naidu SC, Cruz Pimentel M, Hamli H, Issa M, Faleel A, Nagel F, Yan P, Muni RH. Comparison of the Photoreceptor Mosaic Before and After Macular Hole Surgery With High-Resolution Adaptive Optics Imaging. Am J Ophthalmol 2025; 270:261-272. [PMID: 39455037 DOI: 10.1016/j.ajo.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
PURPOSE To assess the photoreceptor mosaic in patients with idiopathic full-thickness macular hole (MH) before and after pars plana vitrectomy (PPV) with adaptive optics enhanced retinal imaging (AO). DESIGN Prospective case series. METHODS Prospective cohort study of patients who presented at the Kensington Eye Institute, Toronto, Canada with a diagnosis of MH treated with PPV. EXCLUSION CRITERIA secondary MH, high myopia (axial length >26.5 mm), media opacity precluding optical coherence tomography or AO imaging, previous intraocular surgery except for cataract extraction. Imaging using an AO fundus camera (Imagine Eyes, RTX1) was performed preoperatively and 3 months following successful MH repair in both eyes. Cone density (CD), regularity, dispersion, and spacing were measured at 2° and/or 4° of eccentricity in 4 quadrants (superior, inferior, nasal, and temporal) with pre- and postoperative values compared. RESULTS We included 18 eyes of 9 patients. At 2° there was significant reduction in CD and increase in spacing and dispersion and a nonsignificant change in regularity postoperatively. Comparison between preoperative and postoperative measurements at 2° mean (standard error) were: CD: 14,612 ± 3003 and 12,280 ± 4632 photoreceptors/mm2 (95% CIs = -2413 to -702) P = .0004, regularity: 88% ± 7% and 84% ± 12% (95% CIs = -4.67 to 0.04) P = .054, dispersion: 19% ± 6% and 23% ± 10% (95% CIs = 0.5-4.24) P = .013, spacing: 9 ± 1 microns and 10 ± 2 microns (95% CIs = 0.40-1.27) P = .0002; at 4° was: CD: 13,377 ± 4339 and 12,770 ± 4391 photoreceptors/mm2 (95% CIs = -1368 to 252) P = .176, regularity:87% ± 9% and 86% ± 12% (95% CIs = -4.65 to 0.08) P = .74, dispersion: 20% ± 8% and 20% ±9% (95% CIs = -2.11 to 1.5) P = .74, spacing:10 ± 2 microns and 10 ± 3 microns (95% CIs = -0.23 to 0.58) P = .39. CONCLUSIONS AO imaging allows quantitative assessment of the photoreceptor mosaic pre- and post-PPV in patients with MH. There was a significant change to the photoreceptor mosaic related to the MH at 2° pre- and postoperatively. AO imaging enables high-resolution investigation of the photoreceptor remodeling process following surgery, which may allow for a more thorough assessment of surgical outcomes.
Collapse
Affiliation(s)
- Paola L Oquendo
- From the Department of Ophthalmology and Vision Sciences, University of Toronto (P.L.O., T.W., S.C.N., M.C.P., H.H., M.I., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada; Department of Ophthalmology, St. Michael's Hospital, Unity Health Toronto (P.L.O., M.C.P., H.H., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada
| | - Thomas Wright
- From the Department of Ophthalmology and Vision Sciences, University of Toronto (P.L.O., T.W., S.C.N., M.C.P., H.H., M.I., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada; Kensington Vision and Research Institute (T.W., P.Y., R.H.M.), Toronto, Ontario, Canada
| | - Sumana C Naidu
- From the Department of Ophthalmology and Vision Sciences, University of Toronto (P.L.O., T.W., S.C.N., M.C.P., H.H., M.I., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada
| | - Miguel Cruz Pimentel
- From the Department of Ophthalmology and Vision Sciences, University of Toronto (P.L.O., T.W., S.C.N., M.C.P., H.H., M.I., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada; Department of Ophthalmology, St. Michael's Hospital, Unity Health Toronto (P.L.O., M.C.P., H.H., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada
| | - Hesham Hamli
- From the Department of Ophthalmology and Vision Sciences, University of Toronto (P.L.O., T.W., S.C.N., M.C.P., H.H., M.I., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada; Department of Ophthalmology, St. Michael's Hospital, Unity Health Toronto (P.L.O., M.C.P., H.H., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada
| | - Mariam Issa
- From the Department of Ophthalmology and Vision Sciences, University of Toronto (P.L.O., T.W., S.C.N., M.C.P., H.H., M.I., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada
| | - Afira Faleel
- Royal College of Surgeons in Ireland (A.F.), Dublin, Ireland
| | - Flavia Nagel
- From the Department of Ophthalmology and Vision Sciences, University of Toronto (P.L.O., T.W., S.C.N., M.C.P., H.H., M.I., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada; Department of Ophthalmology, St. Michael's Hospital, Unity Health Toronto (P.L.O., M.C.P., H.H., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada
| | - Peng Yan
- From the Department of Ophthalmology and Vision Sciences, University of Toronto (P.L.O., T.W., S.C.N., M.C.P., H.H., M.I., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada; Department of Ophthalmology, St. Michael's Hospital, Unity Health Toronto (P.L.O., M.C.P., H.H., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada; Kensington Vision and Research Institute (T.W., P.Y., R.H.M.), Toronto, Ontario, Canada
| | - Rajeev H Muni
- From the Department of Ophthalmology and Vision Sciences, University of Toronto (P.L.O., T.W., S.C.N., M.C.P., H.H., M.I., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada; Department of Ophthalmology, St. Michael's Hospital, Unity Health Toronto (P.L.O., M.C.P., H.H., F.N., P.Y., R.H.M.), Toronto, Ontario, Canada; Kensington Vision and Research Institute (T.W., P.Y., R.H.M.), Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Nyström M, Hooge ITC, Hessels RS, Andersson R, Hansen DW, Johansson R, Niehorster DC. The fundamentals of eye tracking part 3: How to choose an eye tracker. Behav Res Methods 2025; 57:67. [PMID: 39843609 PMCID: PMC11754381 DOI: 10.3758/s13428-024-02587-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/24/2025]
Abstract
There is an abundance of commercial and open-source eye trackers available for researchers interested in gaze and eye movements. Which aspects should be considered when choosing an eye tracker? The paper describes what distinguishes different types of eye trackers, their suitability for different types of research questions, and highlights questions researchers should ask themselves to make an informed choice.
Collapse
Affiliation(s)
- Marcus Nyström
- Lund University Humanities Lab, Box 201, SE, 221 00, Lund, Sweden.
| | - Ignace T C Hooge
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Roy S Hessels
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | | | | | | | - Diederick C Niehorster
- Lund University Humanities Lab, Box 201, SE, 221 00, Lund, Sweden
- Department of Psychology, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Jenks SK, Carrasco M, Poletti M. Asymmetries in foveal vision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629715. [PMID: 39763996 PMCID: PMC11702834 DOI: 10.1101/2024.12.20.629715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Visual perception is characterized by known asymmetries in the visual field; human's visual sensitivity is higher along the horizontal than the vertical meridian, and along the lower than the upper vertical meridian. These asymmetries decrease with decreasing eccentricity from the periphery to the center of gaze, suggesting that they may be absent in the 1-deg foveola, the retinal region used to explore scenes at high-resolution. Using high-precision eyetracking and gaze-contingent display, allowing for accurate control over the stimulated foveolar location despite the continuous eye motion at fixation, we investigated fine visual discrimination at different isoeccentric locations across the foveola and parafovea. Although the tested foveolar locations were only 0.3 deg away from the center of gaze, we show that, similar to more eccentric locations, humans are more sensitive to stimuli presented along the horizontal than the vertical meridian. Whereas the magnitude of this asymmetry is reduced in the foveola, the magnitude of the vertical meridian asymmetry is comparable but, interestingly, reversed: objects presented slightly above the center of gaze are more easily discerned than when presented at the same eccentricity below the center of gaze. Therefore, far from being uniform, as often assumed, foveolar vision is characterized by perceptual asymmetries. Further, these asymmetries differ not only in magnitude but also in direction compared to those present just ~4deg away from the center of gaze, resulting in overall different foveal and extrafoveal perceptual fields.
Collapse
Affiliation(s)
- Samantha K. Jenks
- Department of Brain and Cognitive Sciences, University of Rochester
- Center for Visual Science, University of Rochester
| | - Marisa Carrasco
- Department of Psychology, New York University
- Center for Neural Science, New York University
| | - Martina Poletti
- Department of Brain and Cognitive Sciences, University of Rochester
- Department of Neuroscience, University of Rochester
- Center for Visual Science, University of Rochester
| |
Collapse
|
6
|
Witten JL, Lukyanova V, Harmening WM. Sub-cone visual resolution by active, adaptive sampling in the human foveola. eLife 2024; 13:RP98648. [PMID: 39468921 PMCID: PMC11521370 DOI: 10.7554/elife.98648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
The foveated architecture of the human retina and the eye's mobility enables prime spatial vision, yet the interplay between photoreceptor cell topography and the constant motion of the eye during fixation remains unexplored. With in vivo foveal cone-resolved imaging and simultaneous microscopic photo stimulation, we examined visual acuity in both eyes of 16 participants while precisely recording the stimulus path on the retina. We find that resolution thresholds were correlated with the individual retina's sampling capacity, and exceeded what static sampling limits would predict by 18%, on average. The length and direction of fixational drift motion, previously thought to be primarily random, played a key role in achieving this sub-cone diameter resolution. The oculomotor system finely adjusts drift behavior towards retinal areas with higher cone densities within only a few hundred milliseconds to enhance retinal sampling.
Collapse
Affiliation(s)
- Jenny L Witten
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität BonnBonnGermany
| | - Veronika Lukyanova
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität BonnBonnGermany
| | - Wolf M Harmening
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität BonnBonnGermany
| |
Collapse
|
7
|
Bowers NR, Gautier J, Chung STL, Banks MS, Roorda A. The preferred retinal loci when the eyes converge. J Vis 2024; 24:15. [PMID: 39312251 PMCID: PMC11440557 DOI: 10.1167/jov.24.9.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
The preferred retinal locus (PRL) is the position on the retina to which humans direct stimuli during fixation. In healthy normal eyes, it has been shown to be very stable across time and between different tasks. Previous measurements of the PRL have been made under monocular viewing conditions. The current study examines where the PRLs in the two eyes' retinas are when subjects fixate binocularly and whether they shift when the demand for the eyes to converge is changed. Our apparatus allows us to see exactly where binocular stimuli fell on the two retinas during binocular fixation. Thus, our technique bypasses some of the issues involved in measuring binocular alignment with subjective techniques and previous objective techniques that use conventional eye trackers. These results show that PRLs shift slightly but systematically as the demand for convergence increases. The shifts cause under-convergence (also called exo fixation disparity) for near targets. They are not large enough to cause a break in binocular fusion. The fixation disparity we observed with increasing vergence demand is similar to fixation disparity observed in previous reports.
Collapse
Affiliation(s)
- Norick R Bowers
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- https://vision.berkeley.edu/
| | - Josselin Gautier
- LTSI, Inserm UMR 1099, University of Rennes, France
- https://medicis.univ-rennes1.fr/
| | - Susana T L Chung
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - Martin S Banks
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- https://vision.berkeley.edu/
| |
Collapse
|
8
|
Kreis J, Carroll J. Applications of Adaptive Optics Imaging for Studying Conditions Affecting the Fovea. Annu Rev Vis Sci 2024; 10:239-262. [PMID: 38635871 DOI: 10.1146/annurev-vision-102122-100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The fovea is a highly specialized region of the central retina, defined by an absence of inner retinal layers and the accompanying vasculature, an increased density of cone photoreceptors, a near absence of rod photoreceptors, and unique private-line photoreceptor to midget ganglion cell circuitry. These anatomical specializations support high-acuity vision in humans. While direct study of foveal shape and size is routinely performed using optical coherence tomography, examination of the other anatomical specializations of the fovea has only recently become possible using an array of adaptive optics (AO)-based imaging tools. These devices correct for the eye's monochromatic aberrations and permit cellular-resolution imaging of the living retina. In this article, we review the application of AO-based imaging techniques to conditions affecting the fovea, with an emphasis on how imaging has advanced our understanding of pathophysiology.
Collapse
Affiliation(s)
- Joseph Kreis
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; ,
| | - Joseph Carroll
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; ,
| |
Collapse
|
9
|
Moon B, Linebach G, Yang A, Jenks SK, Rucci M, Poletti M, Rolland JP. High refresh rate display for natural monocular viewing in AOSLO psychophysics experiments. OPTICS EXPRESS 2024; 32:31142-31161. [PMID: 39573257 PMCID: PMC11595291 DOI: 10.1364/oe.529199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 11/27/2024]
Abstract
By combining an external display operating at 360 frames per second with an adaptive optics scanning laser ophthalmoscope (AOSLO) for human foveal imaging, we demonstrate color stimulus delivery at high spatial and temporal resolution in AOSLO psychophysics experiments. A custom pupil relay enables viewing of the stimulus through a 3-mm effective pupil diameter and provides refractive error correction from -8 to +4 diopters. Performance of the assembled and aligned pupil relay was validated by measuring the wavefront error across the field of view and correction range, and the as-built Strehl ratio was 0.64 or better. High-acuity stimuli were rendered on the external display and imaged through the pupil relay to demonstrate that spatial frequencies up to 54 cycles per degree, corresponding to 20/11 visual acuity, are resolved. The completed external display was then used to render fixation markers across the field of view of the monitor, and a continuous retinal montage spanning 9.4 by 5.4 degrees of visual angle was acquired with the AOSLO. We conducted eye-tracking experiments during free-viewing and high-acuity tasks with polychromatic images presented on the external display. Sub-arcminute eye position uncertainty was achieved over a 1.5 by 1.5-degree trackable range, enabling precise localization of the line of sight on the stimulus while simultaneously imaging the fine structure of the human central fovea. This high refresh rate display overcomes the temporal, spectral, and field of view limitations of AOSLO-based stimulus presentation, enabling natural monocular viewing of stimuli in psychophysics experiments conducted with AOSLO.
Collapse
Affiliation(s)
- Benjamin Moon
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Glory Linebach
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Angelina Yang
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Samantha K. Jenks
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Michele Rucci
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Martina Poletti
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
- Department of Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Jannick P. Rolland
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
10
|
Adhan I, Warr E, Grieshop J, Kreis J, Nikezic D, Walesa A, Hemsworth K, Cooper RF, Carroll J. Intervisit Reproducibility of Foveal Cone Density Metrics. Transl Vis Sci Technol 2024; 13:18. [PMID: 38913007 PMCID: PMC11205225 DOI: 10.1167/tvst.13.6.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose To assess longitudinal reproducibility of metrics of foveal density (peak cone density [PCD], cone density centroid [CDC], and 80th percentile centroid area) in participants with normal vision. Methods Participants (n = 19; five male and 14 female) were imaged at two time points (average interval of 3.2 years) using an adaptive optics scanning light ophthalmoscope (AOSLO). Foveally centered regions of interest (ROIs) were extracted from AOSLO montages. Cone coordinate matrices were semiautomatically derived for each ROI, and cone mosaic metrics were calculated. Results On average, there were no significant changes in cone mosaic metrics between visits. The average ± SD PCD was 187,000 ± 20,000 cones/mm2 and 189,000 ± 21,700 cones/mm2 for visits 1 and 2, respectively (P = 0.52). The average ± SD density at the CDC was 183,000 ± 19,000 cones/mm2 and 184,000 ± 20,800 cones/mm2 for visits 1 and 2, respectively (P = 0.78). The average ± SD 80th percentile isodensity contour area was 15,400 ± 1800 µm2 and 15,600 ± 1910 µm2 for visits 1 and 2, respectively (P = 0.57). Conclusions Foveal cone mosaic density metrics were highly reproducible in the cohort examined here, although further study is required in more diverse populations. Translational Relevance Determination of the normative longitudinal changes in foveal cone topography is key for evaluating longitudinal measures of foveal cone topography in patients with progressive retinal dystrophies.
Collapse
Affiliation(s)
- Iniya Adhan
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emma Warr
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jenna Grieshop
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Kreis
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Danica Nikezic
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashleigh Walesa
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Katherine Hemsworth
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert F. Cooper
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
11
|
Warr E, Grieshop J, Cooper RF, Carroll J. The effect of sampling window size on topographical maps of foveal cone density. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1348950. [PMID: 38984138 PMCID: PMC11182112 DOI: 10.3389/fopht.2024.1348950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/13/2024] [Indexed: 07/11/2024]
Abstract
Purpose To characterize the effect of sampling window size on maps of foveal cone density derived from adaptive optics scanning light ophthalmoscope (AOSLO) images of the cone mosaic. Methods Forty-four AOSLO-derived montages of the foveal cone mosaic (300 x 300µm) were used for this study (from 44 individuals with normal vision). Cone photoreceptor coordinates were semi-automatically identified by one experienced grader. From these coordinates, cone density matrices across each foveal montage were derived using 10 different sampling window sizes containing 5, 10, 15, 20, 40, 60, 80, 100, 150, or 200 cones. For all 440 density matrices, we extracted the location and value of peak cone density (PCD), the cone density centroid (CDC) location, and cone density at the CDC. Results Across all window sizes, PCD values were larger than those extracted at the CDC location, though the difference between these density values decreased as the sampling window size increased (p<0.0001). Overall, both PCD (r=-0.8099, p=0.0045) and density at the CDC (r=-0.7596, p=0.0108) decreased with increasing sampling window size. This reduction was more pronounced for PCD, with a 27.8% lower PCD value on average when using the 200-cone versus the 5-cone window (compared to only a 3.5% reduction for density at the CDC between these same window sizes). While the PCD and CDC locations did not occur at the same location within a given montage, there was no significant relationship between this PCD-CDC offset and sampling window size (p=0.8919). The CDC location was less variable across sampling windows, with an average per-participant 95% confidence ellipse area across the 10 window sizes of 47.56µm² (compared to 844.10µm² for the PCD location, p<0.0001). Conclusion CDC metrics appear more stable across varying sampling window sizes than PCD metrics. Understanding how density values change according to the method used to sample the cone mosaic may facilitate comparing cone density data across different studies.
Collapse
Affiliation(s)
- Emma Warr
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenna Grieshop
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert F Cooper
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
12
|
Khademi F, Zhang T, Baumann MP, Malevich T, Yu Y, Hafed ZM. Visual Feature Tuning Properties of Short-Latency Stimulus-Driven Ocular Position Drift Responses during Gaze Fixation. J Neurosci 2024; 44:e1815232024. [PMID: 38302441 PMCID: PMC10977026 DOI: 10.1523/jneurosci.1815-23.2024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Ocular position drifts during gaze fixation are significantly less well understood than microsaccades. We recently identified a short-latency ocular position drift response, of ∼1 min arc amplitude, that is triggered within <100 ms by visual onsets. This systematic eye movement response is feature-tuned and seems to be coordinated with a simultaneous resetting of the saccadic system by visual stimuli. However, much remains to be learned about the drift response, especially for designing better-informed neurophysiological experiments unraveling its mechanistic substrates. Here we systematically tested multiple new feature tuning properties of drift responses. Using highly precise eye tracking in three male rhesus macaque monkeys, we found that drift responses still occur for tiny foveal visual stimuli. Moreover, the responses exhibit size tuning, scaling their amplitude (both up and down) as a function of stimulus size, and they also possess a monotonically increasing contrast sensitivity curve. Importantly, short-latency drift responses still occur for small peripheral visual targets, which additionally introduce spatially directed modulations in drift trajectories toward the appearing peripheral stimuli. Drift responses also remain predominantly upward even for stimuli exclusively located in the lower visual field and even when starting gaze position is upward. When we checked the timing of drift responses, we found it was better synchronized to stimulus-induced saccadic inhibition than to stimulus onset. These results, along with a suppression of drift response amplitudes by peristimulus saccades, suggest that drift responses reflect the rapid impacts of short-latency and feature-tuned visual neural activity on final oculomotor control circuitry in the brain.
Collapse
Affiliation(s)
- Fatemeh Khademi
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076 Tübingen, Germany
| | - Tong Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076 Tübingen, Germany
| | - Matthias P Baumann
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076 Tübingen, Germany
| | - Tatiana Malevich
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076 Tübingen, Germany
| | - Yue Yu
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076 Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076 Tübingen, Germany
| |
Collapse
|
13
|
Curcio CA, Kar D, Owsley C, Sloan KR, Ach T. Age-Related Macular Degeneration, a Mathematically Tractable Disease. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38466281 PMCID: PMC10916886 DOI: 10.1167/iovs.65.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
A progression sequence for age-related macular degeneration onset may be determinable with consensus neuroanatomical nomenclature augmented by drusen biology and eye-tracked clinical imaging. This narrative review proposes to supplement the Early Treatment of Diabetic Retinopathy Study (sETDRS) grid with a ring to capture high rod densities. Published photoreceptor and retinal pigment epithelium (RPE) densities in flat mounted aged-normal donor eyes were recomputed for sETDRS rings including near-periphery rich in rods and cumulatively for circular fovea-centered regions. Literature was reviewed for tissue-level studies of aging outer retina, population-level epidemiology studies regionally assessing risk, vision studies regionally assessing rod-mediated dark adaptation (RMDA), and impact of atrophy on photopic visual acuity. The 3 mm-diameter xanthophyll-rich macula lutea is rod-dominant and loses rods in aging whereas cone and RPE numbers are relatively stable. Across layers, the largest aging effects are accumulation of lipids prominent in drusen, loss of choriocapillary coverage of Bruch's membrane, and loss of rods. Epidemiology shows maximal risk for drusen-related progression in the central subfield with only one third of this risk level in the inner ring. RMDA studies report greatest slowing at the perimeter of this high-risk area. Vision declines precipitously when the cone-rich central subfield is invaded by geographic atrophy. Lifelong sustenance of foveal cone vision within the macula lutea leads to vulnerability in late adulthood that especially impacts rods at its perimeter. Adherence to an sETDRS grid and outer retinal cell populations within it will help dissect mechanisms, prioritize research, and assist in selecting patients for emerging treatments.
Collapse
Affiliation(s)
- Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
14
|
Heitkotter H, Allphin MT, Untaroiu A, Min H, Warr E, Wynne N, Cooper RF, Carroll J. Peak Cone Density Predicted from Outer Segment Length Measured on Optical Coherence Tomography. Curr Eye Res 2024; 49:314-324. [PMID: 38146597 PMCID: PMC10922793 DOI: 10.1080/02713683.2023.2289853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/11/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE To compare peak cone density predicted from outer segment length measured on optical coherence tomography with direct measures of peak cone density from adaptive optics scanning light ophthalmoscopy. METHODS Data from 42 healthy participants with direct peak cone density measures and optical coherence tomography line scans available were used in this study. Longitudinal reflectivity profiles were analyzed using two methods of identifying the boundaries of the ellipsoid and interdigitation zones to estimate maximum outer segment length: peak-to-peak and the slope method. These maximum outer segment length values were then used to predict peak cone density using a previously described geometrical model. A comparison between predicted and direct peak cone density measures was then performed. RESULTS The mean bias between observers for estimating maximum outer segment length across methods was less than 2 µm. Cone density predicted from the peak-to-peak method against direct cone density measures showed a mean bias of 6,812 cones/mm2 with 50% of participants displaying a 10% difference or less between predicted and direct cone density values. Cone density derived from the slope method showed a mean bias of -17,929 cones/mm2 relative to direct cone density measures, with only 41% of participants demonstrating less than a 10% difference between direct and predicted cone density values. CONCLUSION Predicted foveal cone density derived from peak-to-peak outer segment length measurements using commercial optical coherence tomography show modest agreement with direct measures of peak cone density from adaptive optics scanning light ophthalmoscopy. The methods used here are imperfect predictors of cone density, however, further exploration of this relationship could reveal a clinically relevant marker of cone structure.
Collapse
Affiliation(s)
- Heather Heitkotter
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, USA
| | - Mitchell T. Allphin
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
| | - Ana Untaroiu
- School of Medicine, Medical College of Wisconsin, Milwaukee, USA
| | - Heun Min
- School of Medicine, Medical College of Wisconsin, Milwaukee, USA
| | - Emma Warr
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
| | - Niamh Wynne
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert F. Cooper
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
- Joint Department of Biomedical Engineering Marquette University and Medical College of Wisconsin, Milwaukee, USA
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, USA
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
- Joint Department of Biomedical Engineering Marquette University and Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
15
|
Moon B, Poletti M, Roorda A, Tiruveedhula P, Liu SH, Linebach G, Rucci M, Rolland JP. Alignment, calibration, and validation of an adaptive optics scanning laser ophthalmoscope for high-resolution human foveal imaging. APPLIED OPTICS 2024; 63:730-742. [PMID: 38294386 PMCID: PMC11062499 DOI: 10.1364/ao.504283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024]
Abstract
In prior art, advances in adaptive optics scanning laser ophthalmoscope (AOSLO) technology have enabled cones in the human fovea to be resolved in healthy eyes with normal vision and low to moderate refractive errors, providing new insight into human foveal anatomy, visual perception, and retinal degenerative diseases. These high-resolution ophthalmoscopes require careful alignment of each optical subsystem to ensure diffraction-limited imaging performance, which is necessary for resolving the smallest foveal cones. This paper presents a systematic and rigorous methodology for building, aligning, calibrating, and testing an AOSLO designed for imaging the cone mosaic of the central fovea in humans with cellular resolution. This methodology uses a two-stage alignment procedure and thorough system testing to achieve diffraction-limited performance. Results from retinal imaging of healthy human subjects under 30 years of age with refractive errors of less than 3.5 diopters using either 680 nm or 840 nm light show that the system can resolve cones at the very center of the fovea, the region where the cones are smallest and most densely packed.
Collapse
Affiliation(s)
- Benjamin Moon
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Martina Poletti
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
- Department of Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA 94720, USA
| | - Pavan Tiruveedhula
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA 94720, USA
| | - Soh Hang Liu
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Glory Linebach
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Michele Rucci
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Jannick P. Rolland
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
16
|
Domdei N, Ameln J, Gutnikov A, Witten JL, Holz FG, Wahl S, Harmening WM. Cone Density Is Correlated to Outer Segment Length and Retinal Thickness in the Human Foveola. Invest Ophthalmol Vis Sci 2023; 64:11. [PMID: 38064229 PMCID: PMC10709802 DOI: 10.1167/iovs.64.15.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose Assessment of the relationship between in vivo foveolar cone density, cone outer segment length (OSL), and foveal retinal thickness (RT). Methods Foveolar cone density maps covering the central ±300 µm of the retina were derived from adaptive optics scanning laser ophthalmoscopy images. The corresponding maps of foveal cone OSL and RT were derived from high-resolution optical coherence tomography volume scans. Alignment of the two-dimensional maps containing OSL and RT with the cone density map was achieved by placing the location of maximum OSL on the cone density centroid (CDC). Results Across 10 participants (27 ± 9 years; 6 female), cone density at the CDC was found to be between 147,038 and 215,681 cones/mm². The maximum OSL and minimum RT were found to lie between 31 and 40, and 193 and 226 µm, respectively. A significant correlation was observed between cone density at the CDC and maximum OSL (P = 0.001), as well as the minimal RT (P < 0.05). Across all participants, the best fit for the relationship between normalized cone density and normalized OSL within the central 300 µm was given by a quadratic function. Conclusions Using optical coherence tomography-derived measurements of OSL enables to estimate CDC cone density and two-dimensional foveal cone density maps for example in patient eyes unsuitable for adaptive optics imaging. Furthermore, the observation of a fixed relationship between the normalized OSL and cone density points to a conserved mechanism shaping the foveal pit.
Collapse
Affiliation(s)
- Niklas Domdei
- Carl Zeiss Vision International GmbH, Aalen, Germany
| | - Julius Ameln
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | | | - Jenny L Witten
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Siegfried Wahl
- Carl Zeiss Vision International GmbH, Aalen, Germany
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | | |
Collapse
|
17
|
McGwin G, Kar D, Berlin A, Clark ME, Swain TA, Crosson JN, Sloan KR, Owsley C, Curcio CA. Macular and Plasma Xanthophylls Are Higher in Age-related Macular Degeneration than in Normal Aging: Alabama Study on Early Age-related Macular Degeneration 2 Baseline. OPHTHALMOLOGY SCIENCE 2023; 3:100263. [PMID: 36864830 PMCID: PMC9972499 DOI: 10.1016/j.xops.2022.100263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Purpose Quantification of retinal xanthophyll carotenoids in eyes with and without age-related macular degeneration (AMD) via macular pigment optical volume (MPOV), a metric for xanthophyll abundance from dual wavelength autofluorescence, plus correlations to plasma levels, could clarify the role of lutein (L) and zeaxanthin (Z) in health, AMD progression, and supplementation strategies. Design Cross-sectional observational study (NCT04112667). Participants Adults ≥ 60 years from a comprehensive ophthalmology clinic, with healthy maculas or maculas meeting fundus criteria for early or intermediate AMD. Methods Macular health and supplement use was assessed by the Age-related Eye Disease Study (AREDS) 9-step scale and self-report, respectively. Macular pigment optical volume was measured from dual wavelength autofluorescence emissions (Spectralis, Heidelberg Engineering). Non-fasting blood draws were assayed for L and Z using high-performance liquid chromatography. Associations among plasma xanthophylls and MPOV were assessed adjusting for age. Main Outcome Measures Age-related macular degeneration presence and severity, MPOV in fovea-centered regions of radius 2.0° and 9.0°; plasma L and Z (μM/ml). Results Of 809 eyes from 434 persons (89% aged 60-79, 61% female), 53.3% eyes were normal, 28.2% early AMD, and 18.5% intermediate AMD. Macular pigment optical volume 2° and 9° were similar in phakic and pseudophakic eyes, which were combined for analysis. Macular pigment optical volume 2° and 9° and plasma L and Z were higher in early AMD than normal and higher still in intermediate AMD (P < 0.0001). For all participants, higher plasma L was correlated with higher MPOV 2° (Spearman correlation coefficient [Rs] = 0.49; P < 0.0001). These correlations were significant (P < 0.0001) but lower in normal (Rs = 0.37) than early and intermediate AMD (Rs = 0.52 and 0.51, respectively). Results were similar for MPOV 9°. Plasma Z, MPOV 2°, and MPOV 9° followed this same pattern of associations. Associations were not affected by supplement use or smoking status. Conclusions A moderate positive correlation of MPOV with plasma L and Z comports with regulated xanthophyll bioavailability and a hypothesized role for xanthophyll transfer in soft drusen biology. An assumption that xanthophylls are low in AMD retina underlies supplementation strategies to reduce progression risk, which our data do not support. Whether higher xanthophyll levels in AMD are due to supplement use cannot be determined in this study.
Collapse
Key Words
- ALSTAR2, Alabama Study on Early Age-related Macular Degeneration 2
- AMD, age-related macular degeneration
- AREDS, age-related eye disease studies
- Age-related macular degeneration
- Autofluorescence
- BrM, Bruch’s membrane
- HDL, high density lipoprotein
- L, Lutein
- Lutein
- MP, macular pigment
- MPOD, macular pigment optical density
- MPOV, macular pigment optical volume
- Macular xanthophyll pigment
- RPE, retinal pigment epithelium
- Z, Zeaxanthin
- Zeaxanthin
Collapse
Affiliation(s)
- Gerald McGwin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andreas Berlin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Ophthalmology, University Hospital Wurzburg, Wurzburg, Germany
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas A. Swain
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jason N. Crosson
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Retina Consultants of Alabama, Birmingham, Alabama
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Computer Science, School of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
18
|
Wu RJ, Clark AM, Cox MA, Intoy J, Jolly PC, Zhao Z, Rucci M. High-resolution eye-tracking via digital imaging of Purkinje reflections. J Vis 2023; 23:4. [PMID: 37140912 PMCID: PMC10166114 DOI: 10.1167/jov.23.5.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Reliably measuring eye movements and determining where the observer looks are fundamental needs in vision science. A classical approach to achieve high-resolution oculomotor measurements is the so-called dual Purkinje image (DPI) method, a technique that relies on the relative motion of the reflections generated by two distinct surfaces in the eye, the cornea and the back of the lens. This technique has been traditionally implemented in fragile and difficult to operate analog devices, which have remained exclusive use of specialized oculomotor laboratories. Here we describe progress on the development of a digital DPI, a system that builds on recent advances in digital imaging to enable fast, highly precise eye-tracking without the complications of previous analog devices. This system integrates an optical setup with no moving components with a digital imaging module and dedicated software on a fast processing unit. Data from both artificial and human eyes demonstrate subarcminute resolution at 1 kHz. Furthermore, when coupled with previously developed gaze-contingent calibration methods, this system enables localization of the line of sight within a few arcminutes.
Collapse
Affiliation(s)
- Ruei-Jr Wu
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Ashley M Clark
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Michele A Cox
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Janis Intoy
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Paul C Jolly
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Zhetuo Zhao
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Michele Rucci
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| |
Collapse
|
19
|
Patterson EJ, Kalitzeos A, Kane TM, Singh N, Kreis J, Pennesi ME, Hardcastle AJ, Neitz J, Neitz M, Michaelides M, Carroll J. Foveal Cone Structure in Patients With Blue Cone Monochromacy. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 36301530 PMCID: PMC9624264 DOI: 10.1167/iovs.63.11.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Blue cone monochromacy (BCM) is a rare inherited cone disorder in which both long- (L-) and middle- (M-) wavelength sensitive cone classes are either impaired or nonfunctional. Assessing genotype-phenotype relationships in BCM can improve our understanding of retinal development in the absence of functional L- and M-cones. Here we examined foveal cone structure in patients with genetically-confirmed BCM, using adaptive optics scanning light ophthalmoscopy (AOSLO). Methods Twenty-three male patients (aged 6-75 years) with genetically-confirmed BCM were recruited for high-resolution imaging. Eight patients had a deletion of the locus control region (LCR), and 15 had a missense mutation-Cys203Arg-affecting the first two genes in the opsin gene array. Foveal cone structure was assessed using confocal and non-confocal split-detection AOSLO across a 300 × 300 µm area, centered on the location of peak cell density. Results Only one of eight patients with LCR deletions and 10 of 15 patients with Cys203Arg mutations had analyzable images. Mean total cone density for Cys203Arg patients was 16,664 ± 11,513 cones/mm2 (n = 10), which is, on average, around 40% of normal. Waveguiding cone density was 2073 ± 963 cones/mm2 (n = 9), which was consistent with published histological estimates of S-cone density in the normal eye. The one patient with an LCR deletion had a total cone density of 10,246 cones/mm2 and waveguiding density of 1535 cones/mm2. Conclusions Our results show that BCM patients with LCR deletions and Cys203Arg mutations have a population of non-waveguiding photoreceptors, although the spectral identity and level of function remain unknown.
Collapse
Affiliation(s)
- Emily J. Patterson
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Angelos Kalitzeos
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Thomas M. Kane
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Navjit Singh
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Joseph Kreis
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mark E. Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Alison J. Hardcastle
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Jay Neitz
- Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Maureen Neitz
- Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Joseph Carroll
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
20
|
Hofmann J, Domdei L, Jainta S, Harmening WM. Assessment of binocular fixational eye movements including cyclotorsion with split-field binocular scanning laser ophthalmoscopy. J Vis 2022; 22:5. [PMID: 36069941 PMCID: PMC9465939 DOI: 10.1167/jov.22.10.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fixational eye movements are a hallmark of human gaze behavior, yet little is known about how they interact between fellow eyes. Here, we designed, built and validated a split-field binocular scanning laser ophthalmoscope to record high-resolution eye motion traces from both eyes of six observers during fixation in different binocular vergence conditions. In addition to microsaccades and drift, torsional eye motion could be extracted, with a spatial measurement error of less than 1 arcmin. Microsaccades were strongly coupled between fellow eyes under all conditions. No monocular microsaccade occurred and no significant delay between microsaccade onsets across fellow eyes could be detected. Cyclotorsion was also firmly coupled between both eyes, occurring typically in conjugacy, with gradual changes during drift and abrupt changes during saccades.
Collapse
Affiliation(s)
- Julia Hofmann
- Rheinische Friedrich-Wilhelms-Universität Bonn, University Eye Hospital, Bonn, Germany.,Fraunhofer Institute for Optronics, Systems Technologies and Image Exploitations IOSB, Karlsruhe, Germany., https://www.iosb.fraunhofer.de/en.html
| | - Lennart Domdei
- Rheinische Friedrich-Wilhelms-Universität Bonn, University Eye Hospital, Bonn, Germany., https://ao.ukbonn.de/
| | - Stephanie Jainta
- SRH University of Applied Sciences in North Rhine-Westphalia, Hamm, Germany., https://www.srh-hochschule-nrw.de/
| | - Wolf M Harmening
- Rheinische Friedrich-Wilhelms-Universität Bonn, University Eye Hospital, Bonn, Germany., https://ao.ukbonn.de/
| |
Collapse
|
21
|
Wynne N, Cava JA, Gaffney M, Heitkotter H, Scheidt A, Reiniger JL, Grieshop J, Yang K, Harmening WM, Cooper RF, Carroll J. Intergrader agreement of foveal cone topography measured using adaptive optics scanning light ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4445-4454. [PMID: 36032569 PMCID: PMC9408252 DOI: 10.1364/boe.460821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 05/02/2023]
Abstract
The foveal cone mosaic can be directly visualized using adaptive optics scanning light ophthalmoscopy (AOSLO). Previous studies in individuals with normal vision report wide variability in the topography of the foveal cone mosaic, especially the value of peak cone density (PCD). While these studies often involve a human grader, there have been no studies examining intergrader reproducibility of foveal cone mosaic metrics. Here we re-analyzed published AOSLO foveal cone images from 44 individuals to assess the relationship between the cone density centroid (CDC) location and the location of PCD. Across 5 graders with variable experience, we found a measurement error of 11.7% in PCD estimates and higher intergrader reproducibility of CDC location compared to PCD location (p < 0.0001). These estimates of measurement error can be used in future studies of the foveal cone mosaic, and our results support use of the CDC location as a more reproducible anchor for cross-modality analyses.
Collapse
Affiliation(s)
- Niamh Wynne
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Jenna A. Cava
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Mina Gaffney
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, 1250 W Wisconsin Ave, Milwaukee, WI 53233, USA
| | - Heather Heitkotter
- Department of Cell Biology, Neurobiology and Anatomy, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Abigail Scheidt
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Jenny L. Reiniger
- Department of Ophthalmology, University of Bonn, Ernst-Abbe-Str. 2, 53127 Bonn, Germany
| | - Jenna Grieshop
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, 1250 W Wisconsin Ave, Milwaukee, WI 53233, USA
| | - Kai Yang
- Division of Biostatistics, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Wolf M. Harmening
- Department of Ophthalmology, University of Bonn, Ernst-Abbe-Str. 2, 53127 Bonn, Germany
| | - Robert F. Cooper
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, 1250 W Wisconsin Ave, Milwaukee, WI 53233, USA
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, 1250 W Wisconsin Ave, Milwaukee, WI 53233, USA
- Department of Cell Biology, Neurobiology and Anatomy, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| |
Collapse
|
22
|
Lindner M, Gilhooley MJ, Hughes S, Hankins MW. Optogenetics for visual restoration: From proof of principle to translational challenges. Prog Retin Eye Res 2022; 91:101089. [PMID: 35691861 DOI: 10.1016/j.preteyeres.2022.101089] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Degenerative retinal disorders are a diverse family of diseases commonly leading to irreversible photoreceptor death, while leaving the inner retina relatively intact. Over recent years, innovative gene replacement therapies aiming to halt the progression of certain inherited retinal disorders have made their way into clinics. By rendering surviving retinal neurons light sensitive optogenetic gene therapy now offers a feasible treatment option that can restore lost vision, even in late disease stages and widely independent of the underlying cause of degeneration. Since proof-of-concept almost fifteen years ago, this field has rapidly evolved and a detailed first report on a treated patient has recently been published. In this article, we provide a review of optogenetic approaches for vision restoration. We discuss the currently available optogenetic tools and their relative advantages and disadvantages. Possible cellular targets will be discussed and we will address the question how retinal remodelling may affect the choice of the target and to what extent it may limit the outcomes of optogenetic vision restoration. Finally, we will analyse the evidence for and against optogenetic tool mediated toxicity and will discuss the challenges associated with clinical translation of this promising therapeutic concept.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037, Marburg, Germany
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; The Institute of Ophthalmology, University College London, EC1V 9EL, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
23
|
Ameln J, Reiniger JL, Hess K, Holz FG, Harmening WM. Supernormal foveal photoreceptor density in Alport syndrome: A case report. Eur J Ophthalmol 2022:11206721221093197. [PMID: 35410511 DOI: 10.1177/11206721221093197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To investigate foveal photoreceptor configuration in Alport syndrome, a rare inherited disease characterized by Collagen IV dysfunction. METHODS Adaptive optics scanning laser ophthalmoscope (AOSLO) in vivo imaging of the foveal center and quantitative analysis of cone photoreceptor topography in a 17-year-old male patient with Alport syndrome presenting absence of a foveal avascular zone (FAZ) and foveal hypoplasia in both eyes. RESULTS Cone density analysis based on AOSLO images revealed an unusual linear cone topography profile displaying supernormal densities within the fovea (z-scores up to + 3.57 and + 2.97 in right and left eyes, respectively). CONCLUSION Foveal hypoplasia has previously been associated with normal or reduced cone density. Our observation is the first case of disease-related supernormal cone density within the foveola, shedding light upon the role of Collagen IV in foveal maturation.
Collapse
Affiliation(s)
- Julius Ameln
- Department of Ophthalmology, 39062University of Bonn, Bonn, Germany
| | - Jenny L Reiniger
- Department of Ophthalmology, 39062University of Bonn, Bonn, Germany
| | - Kristina Hess
- Department of Ophthalmology, 39062University of Bonn, Bonn, Germany.,Division of Epidemiology and Clinical Research, 35034National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Frank G Holz
- Department of Ophthalmology, 39062University of Bonn, Bonn, Germany
| | - Wolf M Harmening
- Department of Ophthalmology, 39062University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Roshandel D, Sampson DM, Mackey DA, Chen FK. Impact of Reference Center Choice on Adaptive Optics Imaging Cone Mosaic Analysis. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 35446344 PMCID: PMC9034713 DOI: 10.1167/iovs.63.4.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Foveal center marking is a key step in retinal image analysis. We investigated the discordance between the adaptive optics (AO) montage center (AMC) and the foveal pit center (FPC) and its implications for cone mosaic analysis using a commercial flood-illumination AO camera. Methods Thirty eyes of 30 individuals (including 15 healthy and 15 patients with rod–cone dystrophy) were included. Spectral-domain optical coherence tomography was used to determine the FPC, and flood-illumination AO imaging was performed with overlapping image frames to create an AO montage. The AMC was determined by averaging the (0,0) coordinates in the four paracentral overlapping AO image frames. Cone mosaic measurements at various retinal eccentricities were compared between corresponding retinal loci relative to the AMC or FPC. Results AMCs were located temporally to the FPCs in 14 of 15 eyes in both groups. The average AMC–FPC discordance was 0.85° among healthy controls and 0.33° among patients with rod-cone dystrophy (P < 0.05). The distance of the AMC from the FPC was a significant determinant of the cone density (β estimate = 218 cells/deg2/deg; 95% confidence interval [CI], 107–330; P < 0.001) and inter-cone distance (β estimate = 0.28 arcmin/deg; 95% CI, 0.15–0.40; P < 0.001), after adjustment for age, sex, axial length, spherical equivalent, eccentricity, and disease status. Conclusions There is a marked mismatch between the AMC and FPC in healthy eyes that may be modified by disease process such as rod–cone dystrophy. We recommend users of AO imaging systems carefully align the AO montage with a foveal anatomical landmark, such as the FPC, to ensure precise and reproducible localization of the eccentricities and regions of interest for cone mosaic analysis.
Collapse
Affiliation(s)
- Danial Roshandel
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Western Australia, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Danuta M Sampson
- Surrey Biophotonics, Centre for Vision, Speech and Signal Processing and School of Biosciences and Medicine, The University of Surrey, Guildford, United Kingdom
| | - David A Mackey
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Western Australia, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Western Australia, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Kilpeläinen M, Putnam NM, Ratnam K, Roorda A. The retinal and perceived locus of fixation in the human visual system. J Vis 2021; 21:9. [PMID: 34643658 PMCID: PMC8525830 DOI: 10.1167/jov.21.11.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023] Open
Abstract
Due to the dramatic difference in spatial resolution between the central fovea and the surrounding retinal regions, accurate fixation on important objects is critical for humans. It is known that the preferred retinal location (PRL) for fixation of healthy human observers rarely coincides with the retinal location with the highest cone density. It is not currently known, however, whether the PRL is consistent within an observer or is subject to fluctuations and, moreover, whether observers' subjective fixation location coincides with the PRL. We studied whether the PRL changes between days. We used an adaptive optics scanning laser ophthalmoscope to project a Maltese cross fixation target on an observer's retina and continuously imaged the exact retinal location of the target. We found that observers consistently use the same PRL across days, regardless of how much the PRL is displaced from the cone density peak location. We then showed observers small stimuli near the visual field location on which they fixated, and the observers judged whether or not the stimuli appeared in fixation. Observers' precision in this task approached that of fixation itself. Observers based their judgment on both the visual scene coordinates and the retinal location of the stimuli. We conclude that the PRL in a normally functioning visual system is fixed, and observers use it as a reference point in judging stimulus locations.
Collapse
Affiliation(s)
- Markku Kilpeläinen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Nicole M Putnam
- Arizona College of Optometry, Midwestern University, Glendale, AZ, USA
| | | | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
26
|
Bowers NR, Gautier J, Lin S, Roorda A. Fixational eye movements in passive versus active sustained fixation tasks. J Vis 2021; 21:16. [PMID: 34677574 PMCID: PMC8556553 DOI: 10.1167/jov.21.11.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human fixational eye movements are so small and precise that high-speed, accurate tools are needed to fully reveal their properties and functional roles. Where the fixated image lands on the retina and how it moves for different levels of visually demanding tasks is the subject of the current study. An Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO) was used to image, track and present a variety of fixation targets (Maltese cross, disk, concentric circles, Vernier and tumbling-E letter) to healthy subjects. During these different passive (static) or active (discriminating) tasks under natural eye motion, the landing position of the target on the retina was tracked in space and time over the retinal image directly with high spatial (<1 arcmin) and temporal (960 Hz) resolution. We computed both the eye motion and the exact trajectory of the fixated target's motion over the retina. We confirmed that compared to passive tasks, active tasks elicited a partial inhibition of microsaccades, leading to longer drift periods compensated by larger corrective saccades. Consequently, the overall fixation stability during active tasks was on average 57% larger than during passive tasks. The preferred retinal locus of fixation was the same for each task and did not coincide with the location of the peak cone density.
Collapse
Affiliation(s)
- Norick R Bowers
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA.,
| | - Josselin Gautier
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA.,
| | - Samantha Lin
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA.,
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA.,
| |
Collapse
|