1
|
Matos YB, Velichkova N, Kirchknopf Riera M, da Luz MGE, Berni J. Characterizing stage-dependent neuromotor patterns in Drosophila melanogaster larvae through a graph construction approach. Front Neurosci 2025; 19:1557624. [PMID: 40182146 PMCID: PMC11965661 DOI: 10.3389/fnins.2025.1557624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
We investigated developmental changes in neuromotor activity patterns in Drosophila melanogaster larvae by combining calcium imaging with a novel graph-based mathematical framework. This allows to perform relevant quantitative comparisons between first (L1) and early third (L3) instar larvae. We found that L1 larvae exhibit higher frequencies of spontaneous neural activity that fail to propagate, indicating a less mature neuromotor system. In contrast, L3 larvae show efficient initiation and propagation of neural activity along the entire ventral nerve cord (VNC), resulting in longer activity chains. The time of chain propagation along the entire VNC is shorter in L1 than in L3, probably reflecting the increased length of the VNC. On the other hand, the time of peristaltic waves through the whole body during locomotion is much faster in L3 than in L1, so correlating with higher velocities and greater dispersal rates. Hence, the VNC-body interaction determines the characteristics of peristaltic waves propagation in crawling larvae. Further, asymmetrical neuronal activity, predominantly in anterior segments of L3 larvae, was associated with turning behaviors and enhanced navigation. These findings illustrate that the proposed quantitative model provides a systematic method to analyze neuromotor patterns across developmental stages, for instance, helping to uncover the maturation stages of neural circuits and their role in locomotion.
Collapse
Affiliation(s)
- Yuri Bilk Matos
- Departamento de Física, Universidade Federal do Paraná, Curitiba, Brazil
| | - Nadezhda Velichkova
- Brighton and Sussex Medical School, University of Brighton and University of Sussex, Brighton, United Kingdom
| | - Mateo Kirchknopf Riera
- Brighton and Sussex Medical School, University of Brighton and University of Sussex, Brighton, United Kingdom
| | | | - Jimena Berni
- Brighton and Sussex Medical School, University of Brighton and University of Sussex, Brighton, United Kingdom
| |
Collapse
|
2
|
Lowe SA, Wilson AD, Aughey GN, Banerjee A, Goble T, Simon-Batsford N, Sanderson A, Kratschmer P, Balogun M, Gao H, Aw SS, Jepson JEC. Modulation of a critical period for motor development in Drosophila by BK potassium channels. Curr Biol 2024; 34:3488-3505.e3. [PMID: 39053467 DOI: 10.1016/j.cub.2024.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Critical periods are windows of heightened plasticity occurring during neurodevelopment. Alterations in neural activity during these periods can cause long-lasting changes in the structure, connectivity, and intrinsic excitability of neurons, which may contribute to the pathology of neurodevelopmental disorders. However, endogenous regulators of critical periods remain poorly defined. Here, we study this issue using a fruit fly (Drosophila) model of an early-onset movement disorder caused by BK potassium channel gain of function (BK GOF). Deploying a genetic method to place robust expression of GOF BK channels under spatiotemporal control, we show that adult-stage neuronal expression of GOF BK channels minimally disrupts fly movement. In contrast, limiting neuronal expression of GOF BK channels to a short window during late neurodevelopment profoundly impairs locomotion and limb kinematics in resulting adult flies. During this critical period, BK GOF perturbs synaptic localization of the active zone protein Bruchpilot and reduces excitatory neurotransmission. Conversely, enhancing neural activity specifically during development rescues motor defects in BK GOF flies. Collectively, our results reveal a critical developmental period for limb control in Drosophila that is influenced by BK channels and suggest that BK GOF causes movement disorders by disrupting activity-dependent aspects of synaptic development.
Collapse
Affiliation(s)
- Simon A Lowe
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| | - Abigail D Wilson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Gabriel N Aughey
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Animesh Banerjee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Talya Goble
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Department of Cell and Developmental Biology, University College London, London, UK
| | - Nell Simon-Batsford
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Angelina Sanderson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Champalimaud Research, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Patrick Kratschmer
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Maryam Balogun
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Hao Gao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Sherry S Aw
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
3
|
Zhao Q, Li X, Wen J, He Y, Zheng N, Li W, Cardona A, Gong Z. A two-layer neural circuit controls fast forward locomotion in Drosophila. Curr Biol 2024; 34:3439-3453.e5. [PMID: 39053465 DOI: 10.1016/j.cub.2024.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Fast forward locomotion is critical for animal hunting and escaping behaviors. However, how the underlying neural circuit is wired at synaptic resolution to decide locomotion direction and speed remains poorly understood. Here, we identified in the ventral nerve cord (VNC) a set of ascending cholinergic neurons (AcNs) to be command neurons capable of initiating fast forward peristaltic locomotion in Drosophila larvae. Targeted manipulations revealed that AcNs are necessary and sufficient for fast forward locomotion. AcNs can activate their postsynaptic partners, A01j and A02j; both are interneurons with locomotory rhythmicity. Activated A01j neurons form a posterior-anteriorly descendent gradient in output activity along the VNC to launch forward locomotion from the tail. Activated A02j neurons exhibit quicker intersegmental transmission in activity that enables fast propagation of motor waves. Our work revealed a global neural mechanism that coordinately controls the launch direction and propagation speed of Drosophila locomotion, furthering the understanding of the strategy for locomotion control.
Collapse
Affiliation(s)
- Qianhui Zhao
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Xinhang Li
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Jun Wen
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Lab, Hangzhou 311121, China
| | - Yinhui He
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Lab, Hangzhou 311121, China
| | - Wenchang Li
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Albert Cardona
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| | - Zhefeng Gong
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China.
| |
Collapse
|
4
|
Jonaitis J, Hibbard KL, McCafferty Layte K, Hiramoto A, Cardona A, Truman JW, Nose A, Zwart MF, Pulver SR. STEERING FROM THE REAR: COORDINATION OF CENTRAL PATTERN GENERATORS UNDERLYING NAVIGATION BY ASCENDING INTERNEURONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.598162. [PMID: 38948859 PMCID: PMC11212907 DOI: 10.1101/2024.06.17.598162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Understanding how animals coordinate movements to achieve goals is a fundamental pursuit in neuroscience. Here we explore how neurons that reside in posterior lower-order regions of a locomotor system project to anterior higher-order regions to influence steering and navigation. We characterized the anatomy and functional role of a population of ascending interneurons in the ventral nerve cord of Drosophila larvae. Through electron microscopy reconstructions and light microscopy, we determined that the cholinergic 19f cells receive input primarily from premotor interneurons and synapse upon a diverse array of postsynaptic targets within the anterior segments including other 19f cells. Calcium imaging of 19f activity in isolated central nervous system (CNS) preparations in relation to motor neurons revealed that 19f neurons are recruited into most larval motor programmes. 19f activity lags behind motor neuron activity and as a population, the cells encode spatio-temporal patterns of locomotor activity in the larval CNS. Optogenetic manipulations of 19f cell activity in isolated CNS preparations revealed that they coordinate the activity of central pattern generators underlying exploratory headsweeps and forward locomotion in a context and location specific manner. In behaving animals, activating 19f cells suppressed exploratory headsweeps and slowed forward locomotion, while inhibition of 19f activity potentiated headsweeps, slowing forward movement. Inhibiting activity in 19f cells ultimately affected the ability of larvae to remain in the vicinity of an odor source during an olfactory navigation task. Overall, our findings provide insights into how ascending interneurons monitor motor activity and shape interactions amongst rhythm generators underlying complex navigational tasks.
Collapse
Affiliation(s)
- Julius Jonaitis
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | | | - Atsuki Hiramoto
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge UK
| | - James W. Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Maarten F. Zwart
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Centre of Biophotonics, University of St Andrews, St Andrews, UK
- Institute for Behavioural and Neural Sciences, University of St Andrews, St Andrews, UK
| | - Stefan R. Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Centre of Biophotonics, University of St Andrews, St Andrews, UK
- Institute for Behavioural and Neural Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
5
|
Menzies JAC, Maia Chagas A, Baden T, Alonso CR. A microRNA that controls the emergence of embryonic movement. eLife 2024; 13:RP95209. [PMID: 38869942 PMCID: PMC11175612 DOI: 10.7554/elife.95209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Movement is a key feature of animal systems, yet its embryonic origins are not fully understood. Here, we investigate the genetic basis underlying the embryonic onset of movement in Drosophila focusing on the role played by small non-coding RNAs (microRNAs, miRNAs). To this end, we first develop a quantitative behavioural pipeline capable of tracking embryonic movement in large populations of fly embryos, and using this system, discover that the Drosophila miRNA miR-2b-1 plays a role in the emergence of movement. Through the combination of spectral analysis of embryonic motor patterns, cell sorting and RNA in situs, genetic reconstitution tests, and neural optical imaging we define that miR-2b-1 influences the emergence of embryonic movement by exerting actions in the developing nervous system. Furthermore, through the combination of bioinformatics coupled to genetic manipulation of miRNA expression and phenocopy tests we identify a previously uncharacterised (but evolutionarily conserved) chloride channel encoding gene - which we term Movement Modulator (Motor) - as a genetic target that mechanistically links miR-2b-1 to the onset of movement. Cell-specific genetic reconstitution of miR-2b-1 expression in a null miRNA mutant background, followed by behavioural assays and target gene analyses, suggest that miR-2b-1 affects the emergence of movement through effects in sensory elements of the embryonic circuitry, rather than in the motor domain. Our work thus reports the first miRNA system capable of regulating embryonic movement, suggesting that other miRNAs are likely to play a role in this key developmental process in Drosophila as well as in other species.
Collapse
Affiliation(s)
- Jonathan AC Menzies
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - André Maia Chagas
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - Tom Baden
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - Claudio R Alonso
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| |
Collapse
|
6
|
Richardson AM, Sokoloff G, Blumberg MS. Developmentally Unique Cerebellar Processing Prioritizes Self- over Other-Generated Movements. J Neurosci 2024; 44:e2345232024. [PMID: 38589230 PMCID: PMC11079960 DOI: 10.1523/jneurosci.2345-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024] Open
Abstract
Animals must distinguish the sensory consequences of self-generated movements (reafference) from those of other-generated movements (exafference). Only self-generated movements entail the production of motor copies (i.e., corollary discharges), which are compared with reafference in the cerebellum to compute predictive or internal models of movement. Internal models emerge gradually over the first three postnatal weeks in rats through a process that is not yet fully understood. Previously, we demonstrated in postnatal day (P) 8 and P12 rats that precerebellar nuclei convey corollary discharge and reafference to the cerebellum during active (REM) sleep when pups produce limb twitches. Here, recording from a deep cerebellar nucleus (interpositus, IP) in P12 rats of both sexes, we compared reafferent and exafferent responses with twitches and limb stimulations, respectively. As expected, most IP units showed robust responses to twitches. However, in contrast with other sensory structures throughout the brain, relatively few IP units showed exafferent responses. Upon finding that exafferent responses occurred in pups under urethane anesthesia, we hypothesized that urethane inhibits cerebellar cortical cells, thereby disinhibiting exafferent responses in IP. In support of this hypothesis, ablating cortical tissue dorsal to IP mimicked the effects of urethane on exafference. Finally, the results suggest that twitch-related corollary discharge and reafference are conveyed simultaneously and in parallel to cerebellar cortex and IP. Based on these results, we propose that twitches provide opportunities for the nascent cerebellum to integrate somatotopically organized corollary discharge and reafference, thereby enabling the development of closed-loop circuits and, subsequently, internal models.
Collapse
Affiliation(s)
- Angela M Richardson
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa 52242
| | - Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Mark S Blumberg
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa 52242
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
7
|
Hunter I, Coulson B, Pettini T, Davies JJ, Parkin J, Landgraf M, Baines RA. Balance of activity during a critical period tunes a developing network. eLife 2024; 12:RP91599. [PMID: 38193543 PMCID: PMC10945558 DOI: 10.7554/elife.91599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Developing neural circuits are influenced by activity and are especially sensitive to changes in activity during critical periods (CPs) of development. Changes occurring during a CP often become 'locked in' so that they affect the mature network. Indeed, several neurodevelopmental disorders have been linked to excessive activity during such periods. It is, therefore, important to identify those aspects of neural circuit development that are influenced by neural activity during a CP. In this study, we take advantage of the genetic tractability of Drosophila to show that activity perturbation during an embryonic CP permanently alters properties of the locomotor circuit. Specific changes we identify include increased synchronicity of motoneuron activity and greater strengthening of excitatory over inhibitory synaptic drive to motoneurons. These changes are sufficient to reduce network robustness, evidenced by increased sensitivity to induced seizure. We also show that we can rescue these changes when increased activity is mitigated by inhibition provided by mechanosensory neurons. Similarly, we demonstrate a dose-dependent relationship between inhibition experienced during the CP and the extent to which it is possible to rescue the hyperexcitable phenotype characteristic of the parabss mutation. This suggests that developing circuits must be exposed to a properly balanced sum of excitation and inhibition during the CP to achieve normal mature network function. Our results, therefore, provide novel insight into how activity during a CP shapes specific elements of a circuit, and how activity during this period is integrated to tune neural circuits to the environment in which they will likely function.
Collapse
Affiliation(s)
- Iain Hunter
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health,University of ManchesterManchesterUnited Kingdom
| | - Bramwell Coulson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health,University of ManchesterManchesterUnited Kingdom
| | - Tom Pettini
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Jacob J Davies
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health,University of ManchesterManchesterUnited Kingdom
| | - Jill Parkin
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health,University of ManchesterManchesterUnited Kingdom
| | - Matthias Landgraf
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Richard A Baines
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health,University of ManchesterManchesterUnited Kingdom
| |
Collapse
|
8
|
Coulson B, Hunter I, Doran S, Parkin J, Landgraf M, Baines RA. Critical periods in Drosophila neural network development: Importance to network tuning and therapeutic potential. Front Physiol 2022; 13:1073307. [PMID: 36531164 PMCID: PMC9757492 DOI: 10.3389/fphys.2022.1073307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/23/2022] [Indexed: 02/25/2024] Open
Abstract
Critical periods are phases of heightened plasticity that occur during the development of neural networks. Beginning with pioneering work of Hubel and Wiesel, which identified a critical period for the formation of ocular dominance in mammalian visual network connectivity, critical periods have been identified for many circuits, both sensory and motor, and across phyla, suggesting a universal phenomenon. However, a key unanswered question remains why these forms of plasticity are restricted to specific developmental periods rather than being continuously present. The consequence of this temporal restriction is that activity perturbations during critical periods can have lasting and significant functional consequences for mature neural networks. From a developmental perspective, critical period plasticity might enable reproducibly robust network function to emerge from ensembles of cells, whose properties are necessarily variable and fluctuating. Critical periods also offer significant clinical opportunity. Imposed activity perturbation during these periods has shown remarkable beneficial outcomes in a range of animal models of neurological disease including epilepsy. In this review, we spotlight the recent identification of a locomotor critical period in Drosophila larva and describe how studying this model organism, because of its simplified nervous system and an almost complete wired connectome, offers an attractive prospect of understanding how activity during a critical period impacts a neuronal network.
Collapse
Affiliation(s)
- Bramwell Coulson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Iain Hunter
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sarah Doran
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jill Parkin
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Richard A. Baines
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
9
|
Blumberg MS, Dooley JC, Tiriac A. Sleep, plasticity, and sensory neurodevelopment. Neuron 2022; 110:3230-3242. [PMID: 36084653 PMCID: PMC9588561 DOI: 10.1016/j.neuron.2022.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/04/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
A defining feature of early infancy is the immense neural plasticity that enables animals to develop a brain that is functionally integrated with a growing body. Early infancy is also defined as a period dominated by sleep. Here, we describe three conceptual frameworks that vary in terms of whether and how they incorporate sleep as a factor in the activity-dependent development of sensory and sensorimotor systems. The most widely accepted framework is exemplified by the visual system where retinal waves seemingly occur independent of sleep-wake states. An alternative framework is exemplified by the sensorimotor system where sensory feedback from sleep-specific movements activates the brain. We prefer a third framework that encompasses the first two but also captures the diverse ways in which sleep modulates activity-dependent development throughout the nervous system. Appreciation of the third framework will spur progress toward a more comprehensive and cohesive understanding of both typical and atypical neurodevelopment.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| | - James C Dooley
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexandre Tiriac
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
10
|
Baines RA, Landgraf M. Neural development: The role of spontaneous activity. Curr Biol 2021; 31:R1513-R1515. [PMID: 34875237 DOI: 10.1016/j.cub.2021.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing nervous systems exhibit spontaneous activity. Two new studies identify the instructive influence such activity has on the formation of functionally appropriate circuits.
Collapse
Affiliation(s)
- Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|