1
|
Fuenzalida-Uribe N, Hidalgo S, Silva B, Gandhi S, Vo D, Zamani P, Holmes TC, Sayin S, Grunwald Kadow IC, Hadjieconomou D, O’Dowd DK, Campusano JM. The innexin 7 gap junction protein contributes to synchronized activity in the Drosophila antennal lobe and regulates olfactory function. Front Neural Circuits 2025; 19:1563401. [PMID: 40352759 PMCID: PMC12062127 DOI: 10.3389/fncir.2025.1563401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
In the mammalian olfactory bulb (OB), gap junctions coordinate synchronous activity among mitral and tufted cells to process olfactory information. In insects, gap junctions are also present in the antennal lobe (AL), a structure homologous to the mammalian OB. The invertebrate gap junction protein ShakB contributes to electrical synapses between AL projection neurons (PNs) in Drosophila. Other gap junction proteins, including innexin 7 (Inx7), are also expressed in the Drosophila AL, but little is known about their contribution to intercellular communication during olfactory information processing. In this study, we report spontaneous calcium transients in PNs grown in cell culture that are highly synchronous when these neurons are physically connected. RNAi-mediated knockdown of Inx7 in cultured PNs blocks calcium transient neuronal synchronization. In vivo, downregulation of Inx7 in the AL impairs both vinegar-induced electrophysiological calcium responses and behavioral responses to this appetitive stimulus. These results demonstrate that Inx7-encoded gap junctions functionally coordinate PN activity and modulate olfactory information processing in the adult Drosophila AL.
Collapse
Affiliation(s)
- Nicolás Fuenzalida-Uribe
- Laboratorio Neurogenética de la Conducta, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute of Neurobiology, University of Puerto Rico- Medical Sciences Campus, San Juan, Puerto Rico
| | - Sergio Hidalgo
- Laboratorio Neurogenética de la Conducta, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, DC, United States
| | - Bryon Silva
- Laboratorio Neurogenética de la Conducta, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Institut du Cerveau-Paris Brain Institute (ICM), Paris, France
| | - Saurin Gandhi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, United States
| | - David Vo
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, United States
| | - Parham Zamani
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, United States
| | - Todd C. Holmes
- Department of Physiology and Biophysics, and Center for Neural Circuit Mapping, University of California Irvine, Irvine, CA, United States
| | - Sercan Sayin
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Dafni Hadjieconomou
- Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Institut du Cerveau-Paris Brain Institute (ICM), Paris, France
| | - Diane K. O’Dowd
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, United States
| | - Jorge M. Campusano
- Laboratorio Neurogenética de la Conducta, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Hao J, Jie Y, Lu Z, Ye T, Meng J, Liu C, Yan J, Zheng Y, Dong Z, Gu Z. Temporal changes in the transcriptome profile of Macrobrachium rosenbergii in response to decapod iridescent virus 1 infection. Front Immunol 2025; 16:1575476. [PMID: 40276510 PMCID: PMC12018387 DOI: 10.3389/fimmu.2025.1575476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
The farming of Macrobrachium rosenbergii faces significant challenges due to infections caused by Decapod iridovirus 1 (DIV1). To gain deeper insights into the dynamic immune regulatory processes of M. rosenbergii in response to DIV1 infection, RNA sequencing (RNA-seq) was employed to profile the transcriptome in the hepatopancreas at 24, 48, 72, and 96 hours post-infection (hpi). Time-course analysis revealed 3,339 differentially expressed genes (DEGs), which exhibited distinct expression patterns across various stages of infection. At 24 hpi and 48 hpi, the top 20 enriched pathways included 3 immunity-related pathways (Lysosome, Phagosome, C-type lectin receptor signaling) and 7 metabolism-related pathways at 24 hpi, and 5 metabolism-related pathways at 48 hpi. In contrast, in the later stages of infection (72 hpi), 13 of the top 17 enriched pathways associated with DEGs were metabolism-related, including those involved in antioxidant defense, such as the Peroxisome, Cysteine and methionine metabolism, and Glutathione metabolism. At 96 hpi, pathways related to ECM-receptor interaction, Purine metabolism, and Lysosome were significantly enriched. Among the DEGs, a total of 16 genes were consistently identified across all time points, with 14 of these genes, including alpha-2-macroglobulin-like, alpha-amylase 1-like, putative aldolase class 2 protein PA3430, platelet-derived growth factor subunit B-like, serum amyloid A-5 protein-like, phenoloxidase-activating enzyme-like, pantetheinase-like, and perlucin-like protein, demonstrating sustained upregulation at all time points. In contrast, the gene encoding rhodanese domain-containing protein CG4456-like was consistantly downregulated. Additionally, weighted gene co-expression network analysis (WGCNA) indicated several hub genes that were tightly connected to intercellular communication, such as innexin shaking-B-like and innexin inx3-like, and endochitinase A1-like. The gene expression changes varied over time, exhibiting a dynamic, time-dependent pattern that underscores the complexity of host-pathogen interactions. These results provide new insights into the cellular mechanisms influenced by DIV1 throughout the infection process, offering valuable knowledge for developing virus control strategies in shrimp aquaculture.
Collapse
Affiliation(s)
- Jingwen Hao
- Xianghu Laboratory, Hangzhou, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yukun Jie
- Xianghu Laboratory, Hangzhou, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Zhibin Lu
- Xianghu Laboratory, Hangzhou, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | | | | | - Cui Liu
- Xianghu Laboratory, Hangzhou, China
| | | | | | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | | |
Collapse
|
3
|
Castañeda-Sampedro A, Alcorta E, Gomez-Diaz C. Cell-specific genetic expression profile of antennal glia in Drosophila reveals candidate genes in neuron-glia interactions. Sci Rep 2025; 15:5493. [PMID: 39953089 PMCID: PMC11828885 DOI: 10.1038/s41598-025-87834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
Understanding the genetic basis of neuron-glia interactions is essential to comprehend the function of glia. Recent studies on Drosophila antennal glia Mz317 has shown their role in olfactory perception. In the antenna, the Mz317-type glia tightly envelops the somas of olfactory sensory neurons and axons already covered by wrapping glia. Here, we investigate candidate genes involved in glial regulation in olfactory reception of Drosophila. Targeted transcriptional profiling reveals that Mz317 glial cells express 21% of Drosophila genes emphasizing functions related to cell junction organization, synaptic transmission, and chemical stimuli response. Comparative gene expression analysis with other glial cell types in both the antenna and brain provides a differential description based on cell type, offers candidate genes for further investigation, and contributes to our understanding of neuron-glia communication in olfactory signaling. Additionally, similarities between the molecular signatures of peripheral glia in Drosophila and vertebrates highlight the utility of model organisms in elucidating glial cell functions in complex systems.
Collapse
Affiliation(s)
- Ana Castañeda-Sampedro
- Departamento de Biología Funcional (Área de Genética), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, c/Julián Clavería s/n, 33006, Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Asturias, Spain
| | - Esther Alcorta
- Departamento de Biología Funcional (Área de Genética), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, c/Julián Clavería s/n, 33006, Oviedo, Asturias, Spain.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Asturias, Spain.
| | - Carolina Gomez-Diaz
- Departamento de Biología Funcional (Área de Genética), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, c/Julián Clavería s/n, 33006, Oviedo, Asturias, Spain.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Asturias, Spain.
| |
Collapse
|
4
|
Larnerd C, Nolazco M, Valdez A, Sanchez V, Wolf FW. Memory-like states created by the first ethanol experience are encoded into the Drosophila mushroom body learning and memory circuitry in an ethanol-specific manner. PLoS Genet 2025; 21:e1011582. [PMID: 39899623 PMCID: PMC11801723 DOI: 10.1371/journal.pgen.1011582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/06/2025] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
A first ethanol exposure creates three memory-like states in Drosophila. Ethanol memory-like states appear genetically and behaviorally paralleled to the canonical learning and memory traces anesthesia-sensitive, anesthesia-resistant, and long-term memory ASM, ARM, and LTM. It is unknown if these ethanol memory-like states are also encoded by the canonical learning and memory circuitry that is centered on the mushroom bodies. We show that the three ethanol memory-like states, anesthesia-sensitive tolerance (AST) and anesthesia resistant tolerance (ART) created by ethanol sedation to a moderately high ethanol exposure, and chronic tolerance created by a longer low concentration ethanol exposure, each engage the mushroom body circuitry differently. Moreover, critical encoding steps for ethanol memory-like states reside outside the mushroom body circuitry, and within the mushroom body circuitry they are markedly distinct from classical memory traces. Thus, the first ethanol exposure creates distinct memory-like states in ethanol-specific circuits and impacts the function of learning and memory circuitry in ways that might influence the formation and retention of other memories.
Collapse
Affiliation(s)
- Caleb Larnerd
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, United States of America
| | - Maria Nolazco
- Biological Sciences Undergraduate Program, University of California, Merced, California, United States of America
| | - Ashley Valdez
- Biological Sciences Undergraduate Program, University of California, Merced, California, United States of America
| | - Vanessa Sanchez
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, United States of America
| | - Fred W. Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, United States of America
- Department of Molecular and Cell Biology, University of California, Merced, California, United States of America
| |
Collapse
|
5
|
Lee M, Kim SY, Park T, Yoon SE, Kim YJ, Joo KM, Kwon JY, Kim K, Kang K. An evolutionarily conserved cation channel tunes the sensitivity of gustatory neurons to ephaptic inhibition in Drosophila. Proc Natl Acad Sci U S A 2025; 122:e2413134122. [PMID: 39823301 PMCID: PMC11760501 DOI: 10.1073/pnas.2413134122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/06/2024] [Indexed: 01/19/2025] Open
Abstract
In ephaptic coupling, physically adjacent neurons influence one another's activity via the electric fields they generate. To date, the molecular mechanisms that mediate and modulate ephaptic coupling's effects remain poorly understood. Here, we show that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel lateralizes the potentially mutual ephaptic inhibition between Drosophila gustatory receptor neurons (GRNs). While sweet-sensing GRNs (sGRNs) engage in ephaptic suppression of the adjacent bitter-sensing GRNs (bGRNs), HCN expression in sGRNs enables them to resist ephaptic suppression from the bGRNs. This one-sided ephaptic inhibition confers sweetness dominance, facilitating ingestion of bitter-laced sweets. The role of fly HCN in this process can be replaced by human HCN2. Furthermore, unlike the mechanism in olfaction, gustatory ephaptic inhibition is independent of sensillum potential changes, suggesting that the compartmentalized arrangement of neighboring GRNs is dispensable for gustatory ephaptic inhibition. These findings indicate a role for the gating of ephaptic coding to ensure the intake of the essential nutrient despite bitter contaminants present in the feeding niche of Drosophila, and propose that studies in Drosophila gustation could reveal ephaptic principles conserved across diverse animals.
Collapse
Affiliation(s)
- MinHyuk Lee
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu41062, Republic of Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Suwon16419, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Seon Yeong Kim
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu41062, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu42988, Republic of Korea
| | - Taeim Park
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu41062, Republic of Korea
| | - Sung-Eun Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Suwon16419, Republic of Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Kyuhyung Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu42988, Republic of Korea
| | - KyeongJin Kang
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu41062, Republic of Korea
| |
Collapse
|
6
|
Pang MM, Chen F, Xie M, Druckmann S, Clandinin TR, Yang HH. A recurrent neural circuit in Drosophila temporally sharpens visual inputs. Curr Biol 2025; 35:333-346.e6. [PMID: 39706173 PMCID: PMC11769683 DOI: 10.1016/j.cub.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
A critical goal of vision is to detect changes in light intensity, even when these changes are blurred by the spatial resolution of the eye and the motion of the animal. Here, we describe a recurrent neural circuit in Drosophila that compensates for blur and thereby selectively enhances the perceived contrast of moving edges. Using in vivo, two-photon voltage imaging, we measured the temporal response properties of L1 and L2, two cell types that receive direct synaptic input from photoreceptors. These neurons have biphasic responses to brief flashes of light, a hallmark of cells that encode changes in stimulus intensity. However, the second phase was often much larger in area than the first, creating an unusual temporal filter. Genetic dissection revealed that recurrent neural circuitry strongly shapes the second phase of the response, informing the structure of a dynamical model. By applying this model to moving natural images, we demonstrate that rather than veridically representing stimulus changes, this temporal processing strategy systematically enhances them, amplifying and sharpening responses. Comparing the measured responses of L2 to model predictions across both artificial and natural stimuli revealed that L2 tunes its properties as the model predicts to temporally sharpen visual inputs. Since this strategy is tunable to behavioral context, generalizable to any time-varying sensory input, and implementable with a common circuit motif, we propose that it could be broadly used to selectively enhance sharp and salient changes.
Collapse
Affiliation(s)
- Michelle M Pang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Feng Chen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Marjorie Xie
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Helen H Yang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Michel JC, Martin EA, Crow WE, Kissinger JS, Lukowicz-Bedford RM, Horrocks M, Branon TC, Ting AY, Miller AC. Electrical synapse molecular diversity revealed by proximity-based proteomic discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624763. [PMID: 39605535 PMCID: PMC11601576 DOI: 10.1101/2024.11.22.624763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Neuronal circuits are composed of synapses that are either chemical, where signals are transmitted via neurotransmitter release and reception, or electrical, where signals pass directly through interneuronal gap junction channels. While the molecular complexity that controls chemical synapse structure and function is well appreciated, the proteins of electrical synapses beyond the gap-junction-forming Connexins are not well defined. Yet, electrical synapses are expected to be molecularly complex beyond the gap junctions. Connexins are integral membrane proteins requiring vesicular transport and membrane insertion/retrieval to achieve function, homeostasis, and plasticity. Additionally, electron microscopy of neuronal gap junctions reveals neighboring electron dense regions termed the electrical synapse density (ESD). To reveal the molecular complexity of the electrical synapse proteome, we used proximity-dependent biotinylation (TurboID) linked to neural Connexins in zebrafish. Proteomic analysis of developing and mature nervous systems identifies hundreds of Connexin-associated proteins, with overlapping and distinct representation during development and adulthood. The identified protein classes span cell adhesion molecules, cytoplasmic scaffolds, vesicular trafficking, and proteins usually associated with the post synaptic density (PSD) of chemical synapses. Using circuits with stereotyped electrical and chemical synapses, we define molecular sub-synaptic compartments of ESD localizing proteins, we find molecular heterogeneity amongst electrical synapse populations, and we examine the synaptic intermingling of electrical and chemical synapse proteins. Taken together, these results reveal a new complexity of electrical synapse molecular diversity and highlight a novel overlap between chemical and electrical synapse proteomes. Moreover, human homologs of the electrical synapse proteins are associated with autism, epilepsy, and other neurological disorders, providing a novel framework towards understanding neuro-atypical states.
Collapse
|
8
|
Pokusaeva VO, Satapathy R, Symonova O, Joesch M. Bilateral interactions of optic-flow sensitive neurons coordinate course control in flies. Nat Commun 2024; 15:8830. [PMID: 39396050 PMCID: PMC11470938 DOI: 10.1038/s41467-024-53173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2024] [Indexed: 10/14/2024] Open
Abstract
Animals rely on compensatory actions to maintain stability and navigate their environment efficiently. These actions depend on global visual motion cues known as optic-flow. While the optomotor response has been the traditional focus for studying optic-flow compensation in insects, its simplicity has been insufficient to determine the role of the intricate optic-flow processing network involved in visual course control. Here, we reveal a series of course control behaviours in Drosophila and link them to specific neural circuits. We show that bilateral electrical coupling of optic-flow-sensitive neurons in the fly's lobula plate are required for a proper course control. This electrical interaction works alongside chemical synapses within the HS-H2 network to control the dynamics and direction of turning behaviours. Our findings reveal how insects use bilateral motion cues for navigation, assigning a new functional significance to the HS-H2 network and suggesting a previously unknown role for gap junctions in non-linear operations.
Collapse
Affiliation(s)
- Victoria O Pokusaeva
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Roshan Satapathy
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Olga Symonova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Maximilian Joesch
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
9
|
Prelic S, Keesey IW, Lavista-Llanos S, Hansson BS, Wicher D. Innexin expression and localization in the Drosophila antenna indicate gap junction or hemichannel involvement in antennal chemosensory sensilla. Cell Tissue Res 2024; 398:35-62. [PMID: 39174822 PMCID: PMC11424723 DOI: 10.1007/s00441-024-03909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Odor detection in insects is largely mediated by structures on antennae called sensilla, which feature a strongly conserved architecture and repertoire of olfactory sensory neurons (OSNs) and various support cell types. In Drosophila, OSNs are tightly apposed to supporting cells, whose connection with neurons and functional roles in odor detection remain unclear. Coupling mechanisms between these neuronal and non-neuronal cell types have been suggested based on morphological observations, concomitant physiological activity during odor stimulation, and known interactions that occur in other chemosensory systems. For instance, it is not known whether cell-cell coupling via gap junctions between OSNs and neighboring cells exists, or whether hemichannels interconnect cellular and extracellular sensillum compartments. Here, we show that innexins, which form hemichannels and gap junctions in invertebrates, are abundantly expressed in adult drosophilid antennae. By surveying antennal transcriptomes and performing various immunohistochemical stainings in antennal tissues, we discover innexin-specific patterns of expression and localization, with a majority of innexins strongly localizing to glial and non-neuronal cells, likely support and epithelial cells. Finally, by injecting gap junction-permeable dye into a pre-identified sensillum, we observe no dye coupling between neuronal and non-neuronal cells. Together with evidence of non-neuronal innexin localization, we conclude that innexins likely do not conjoin neurons to support cells, but that junctions and hemichannels may instead couple support cells among each other or to their shared sensillum lymph to achieve synchronous activity. We discuss how coupling of sensillum microenvironments or compartments may potentially contribute to facilitate chemosensory functions of odor sensing and sensillum homeostasis.
Collapse
Affiliation(s)
- Sinisa Prelic
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian W Keesey
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sofia Lavista-Llanos
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dieter Wicher
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
10
|
Majeed M, Han H, Zhang K, Cao WX, Liao CP, Hobert O, Lu H. Toolkits for detailed and high-throughput interrogation of synapses in C. elegans. eLife 2024; 12:RP91775. [PMID: 38224479 PMCID: PMC10945580 DOI: 10.7554/elife.91775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Visualizing synaptic connectivity has traditionally relied on time-consuming electron microscopy-based imaging approaches. To scale the analysis of synaptic connectivity, fluorescent protein-based techniques have been established, ranging from the labeling of specific pre- or post-synaptic components of chemical or electrical synapses to transsynaptic proximity labeling technology such as GRASP and iBLINC. In this paper, we describe WormPsyQi, a generalizable image analysis pipeline that automatically quantifies synaptically localized fluorescent signals in a high-throughput and robust manner, with reduced human bias. We also present a resource of 30 transgenic strains that label chemical or electrical synapses throughout the nervous system of the nematode Caenorhabditis elegans, using CLA-1, RAB-3, GRASP (chemical synapses), or innexin (electrical synapse) reporters. We show that WormPsyQi captures synaptic structures in spite of substantial heterogeneity in neurite morphology, fluorescence signal, and imaging parameters. We use these toolkits to quantify multiple obvious and subtle features of synapses - such as number, size, intensity, and spatial distribution of synapses - in datasets spanning various regions of the nervous system, developmental stages, and sexes. Although the pipeline is described in the context of synapses, it may be utilized for other 'punctate' signals, such as fluorescently tagged neurotransmitter receptors and cell adhesion molecules, as well as proteins in other subcellular contexts. By overcoming constraints on time, sample size, cell morphology, and phenotypic space, this work represents a powerful resource for further analysis of synapse biology in C. elegans.
Collapse
Affiliation(s)
- Maryam Majeed
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Haejun Han
- School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUnited States
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
| | - Keren Zhang
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Wen Xi Cao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Hang Lu
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
11
|
Gebehart C, Büschges A. The processing of proprioceptive signals in distributed networks: insights from insect motor control. J Exp Biol 2024; 227:jeb246182. [PMID: 38180228 DOI: 10.1242/jeb.246182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The integration of sensory information is required to maintain body posture and to generate robust yet flexible locomotion through unpredictable environments. To anticipate required adaptations in limb posture and enable compensation of sudden perturbations, an animal's nervous system assembles external (exteroception) and internal (proprioception) cues. Coherent neuronal representations of the proprioceptive context of the body and the appendages arise from the concerted action of multiple sense organs monitoring body kinetics and kinematics. This multimodal proprioceptive information, together with exteroceptive signals and brain-derived descending motor commands, converges onto premotor networks - i.e. the local neuronal circuitry controlling motor output and movements - within the ventral nerve cord (VNC), the insect equivalent of the vertebrate spinal cord. This Review summarizes existing knowledge and recent advances in understanding how local premotor networks in the VNC use convergent information to generate contextually appropriate activity, focusing on the example of posture control. We compare the role and advantages of distributed sensory processing over dedicated neuronal pathways, and the challenges of multimodal integration in distributed networks. We discuss how the gain of distributed networks may be tuned to enable the behavioral repertoire of these systems, and argue that insect premotor networks might compensate for their limited neuronal population size by, in comparison to vertebrate networks, relying more heavily on the specificity of their connections. At a time in which connectomics and physiological recording techniques enable anatomical and functional circuit dissection at an unprecedented resolution, insect motor systems offer unique opportunities to identify the mechanisms underlying multimodal integration for flexible motor control.
Collapse
Affiliation(s)
- Corinna Gebehart
- Champalimaud Foundation, Champalimaud Research, 1400-038 Lisbon, Portugal
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
12
|
Zhao A, Nern A, Koskela S, Dreher M, Erginkaya M, Laughland CW, Ludwigh H, Thomson A, Hoeller J, Parekh R, Romani S, Bock DD, Chiappe E, Reiser MB. A comprehensive neuroanatomical survey of the Drosophila Lobula Plate Tangential Neurons with predictions for their optic flow sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562634. [PMID: 37904921 PMCID: PMC10614863 DOI: 10.1101/2023.10.16.562634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Flying insects exhibit remarkable navigational abilities controlled by their compact nervous systems. Optic flow, the pattern of changes in the visual scene induced by locomotion, is a crucial sensory cue for robust self-motion estimation, especially during rapid flight. Neurons that respond to specific, large-field optic flow patterns have been studied for decades, primarily in large flies, such as houseflies, blowflies, and hover flies. The best-known optic-flow sensitive neurons are the large tangential cells of the dipteran lobula plate, whose visual-motion responses, and to a lesser extent, their morphology, have been explored using single-neuron neurophysiology. Most of these studies have focused on the large, Horizontal and Vertical System neurons, yet the lobula plate houses a much larger set of 'optic-flow' sensitive neurons, many of which have been challenging to unambiguously identify or to reliably target for functional studies. Here we report the comprehensive reconstruction and identification of the Lobula Plate Tangential Neurons in an Electron Microscopy (EM) volume of a whole Drosophila brain. This catalog of 58 LPT neurons (per brain hemisphere) contains many neurons that are described here for the first time and provides a basis for systematic investigation of the circuitry linking self-motion to locomotion control. Leveraging computational anatomy methods, we estimated the visual motion receptive fields of these neurons and compared their tuning to the visual consequence of body rotations and translational movements. We also matched these neurons, in most cases on a one-for-one basis, to stochastically labeled cells in genetic driver lines, to the mirror-symmetric neurons in the same EM brain volume, and to neurons in an additional EM data set. Using cell matches across data sets, we analyzed the integration of optic flow patterns by neurons downstream of the LPTs and find that most central brain neurons establish sharper selectivity for global optic flow patterns than their input neurons. Furthermore, we found that self-motion information extracted from optic flow is processed in distinct regions of the central brain, pointing to diverse foci for the generation of visual behaviors.
Collapse
Affiliation(s)
- Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Sanna Koskela
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Mert Erginkaya
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Connor W Laughland
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Henrique Ludwigh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Alex Thomson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Judith Hoeller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, USA
| | - Eugenia Chiappe
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| |
Collapse
|
13
|
Verga L, Kotz SA, Ravignani A. The evolution of social timing. Phys Life Rev 2023; 46:131-151. [PMID: 37419011 DOI: 10.1016/j.plrev.2023.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023]
Abstract
Sociality and timing are tightly interrelated in human interaction as seen in turn-taking or synchronised dance movements. Sociality and timing also show in communicative acts of other species that might be pleasurable, but also necessary for survival. Sociality and timing often co-occur, but their shared phylogenetic trajectory is unknown: How, when, and why did they become so tightly linked? Answering these questions is complicated by several constraints; these include the use of divergent operational definitions across fields and species, the focus on diverse mechanistic explanations (e.g., physiological, neural, or cognitive), and the frequent adoption of anthropocentric theories and methodologies in comparative research. These limitations hinder the development of an integrative framework on the evolutionary trajectory of social timing and make comparative studies not as fruitful as they could be. Here, we outline a theoretical and empirical framework to test contrasting hypotheses on the evolution of social timing with species-appropriate paradigms and consistent definitions. To facilitate future research, we introduce an initial set of representative species and empirical hypotheses. The proposed framework aims at building and contrasting evolutionary trees of social timing toward and beyond the crucial branch represented by our own lineage. Given the integration of cross-species and quantitative approaches, this research line might lead to an integrated empirical-theoretical paradigm and, as a long-term goal, explain why humans are such socially coordinated animals.
Collapse
Affiliation(s)
- Laura Verga
- Comparative Bioacoustic Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Sonja A Kotz
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Andrea Ravignani
- Comparative Bioacoustic Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Galili DS, Jefferis GS, Costa M. Connectomics and the neural basis of behaviour. CURRENT OPINION IN INSECT SCIENCE 2022; 54:100968. [PMID: 36113710 PMCID: PMC7614087 DOI: 10.1016/j.cois.2022.100968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Methods to acquire and process synaptic-resolution electron-microscopy datasets have progressed very rapidly, allowing production and annotation of larger, more complete connectomes. More accurate neuronal matching techniques are enriching cell type data with gene expression, neuron activity, behaviour and developmental information, providing ways to test hypotheses of circuit function. In a variety of behaviours such as learned and innate olfaction, navigation and sexual behaviour, connectomics has already revealed interconnected modules with a hierarchical structure, recurrence and integration of sensory streams. Comparing individual connectomes to determine which circuit features are robust and which are variable is one key research area; new work in comparative connectomics across development, experience, sex and species will establish strong links between neuronal connectivity and brain function.
Collapse
Affiliation(s)
- Dana S Galili
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Gregory Sxe Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
15
|
Lillvis JL, Otsuna H, Ding X, Pisarev I, Kawase T, Colonell J, Rokicki K, Goina C, Gao R, Hu A, Wang K, Bogovic J, Milkie DE, Meienberg L, Mensh BD, Boyden ES, Saalfeld S, Tillberg PW, Dickson BJ. Rapid reconstruction of neural circuits using tissue expansion and light sheet microscopy. eLife 2022; 11:e81248. [PMID: 36286237 PMCID: PMC9651950 DOI: 10.7554/elife.81248] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Brain function is mediated by the physiological coordination of a vast, intricately connected network of molecular and cellular components. The physiological properties of neural network components can be quantified with high throughput. The ability to assess many animals per study has been critical in relating physiological properties to behavior. By contrast, the synaptic structure of neural circuits is presently quantifiable only with low throughput. This low throughput hampers efforts to understand how variations in network structure relate to variations in behavior. For neuroanatomical reconstruction, there is a methodological gulf between electron microscopic (EM) methods, which yield dense connectomes at considerable expense and low throughput, and light microscopic (LM) methods, which provide molecular and cell-type specificity at high throughput but without synaptic resolution. To bridge this gulf, we developed a high-throughput analysis pipeline and imaging protocol using tissue expansion and light sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many animals with single-synapse resolution and molecular contrast. Using Drosophila to validate this approach, we demonstrate that it yields synaptic counts similar to those obtained by EM, enables synaptic connectivity to be compared across sex and experience, and can be used to correlate structural connectivity, functional connectivity, and behavior. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.
Collapse
Affiliation(s)
- Joshua L Lillvis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Xiaoyu Ding
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Igor Pisarev
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Takashi Kawase
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Konrad Rokicki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Cristian Goina
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruixuan Gao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- MIT McGovern Institute for Brain ResearchCambridgeUnited States
- Departments of Chemistry and Biological Sciences, University of Illinois ChicagoChicagoUnited States
| | - Amy Hu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - John Bogovic
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Edward S Boyden
- MIT McGovern Institute for Brain ResearchCambridgeUnited States
- Howard Hughes Medical InstituteCambridgeUnited States
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Paul W Tillberg
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, The University of QueenslandSt LuciaAustralia
| |
Collapse
|
16
|
Shinomiya K, Nern A, Meinertzhagen IA, Plaza SM, Reiser MB. Neuronal circuits integrating visual motion information in Drosophila melanogaster. Curr Biol 2022; 32:3529-3544.e2. [PMID: 35839763 DOI: 10.1016/j.cub.2022.06.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
The detection of visual motion enables sophisticated animal navigation, and studies on flies have provided profound insights into the cellular and circuit bases of this neural computation. The fly's directionally selective T4 and T5 neurons encode ON and OFF motion, respectively. Their axons terminate in one of the four retinotopic layers in the lobula plate, where each layer encodes one of the four directions of motion. Although the input circuitry of the directionally selective neurons has been studied in detail, the synaptic connectivity of circuits integrating T4/T5 motion signals is largely unknown. Here, we report a 3D electron microscopy reconstruction, wherein we comprehensively identified T4/T5's synaptic partners in the lobula plate, revealing a diverse set of new cell types and attributing new connectivity patterns to the known cell types. Our reconstruction explains how the ON- and OFF-motion pathways converge. T4 and T5 cells that project to the same layer connect to common synaptic partners and comprise a core motif together with bilayer interneurons, detailing the circuit basis for computing motion opponency. We discovered pathways that likely encode new directions of motion by integrating vertical and horizontal motion signals from upstream T4/T5 neurons. Finally, we identify substantial projections into the lobula, extending the known motion pathways and suggesting that directionally selective signals shape feature detection there. The circuits we describe enrich the anatomical basis for experimental and computations analyses of motion vision and bring us closer to understanding complete sensory-motor pathways.
Collapse
Affiliation(s)
- Kazunori Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ian A Meinertzhagen
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
17
|
Vaughn MJ, Haas JS. On the Diverse Functions of Electrical Synapses. Front Cell Neurosci 2022; 16:910015. [PMID: 35755782 PMCID: PMC9219736 DOI: 10.3389/fncel.2022.910015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical synapses are the neurophysiological product of gap junctional pores between neurons that allow bidirectional flow of current between neurons. They are expressed throughout the mammalian nervous system, including cortex, hippocampus, thalamus, retina, cerebellum, and inferior olive. Classically, the function of electrical synapses has been associated with synchrony, logically following that continuous conductance provided by gap junctions facilitates the reduction of voltage differences between coupled neurons. Indeed, electrical synapses promote synchrony at many anatomical and frequency ranges across the brain. However, a growing body of literature shows there is greater complexity to the computational function of electrical synapses. The paired membranes that embed electrical synapses act as low-pass filters, and as such, electrical synapses can preferentially transfer spike after hyperpolarizations, effectively providing spike-dependent inhibition. Other functions include driving asynchronous firing, improving signal to noise ratio, aiding in discrimination of dissimilar inputs, or dampening signals by shunting current. The diverse ways by which electrical synapses contribute to neuronal integration merits furthers study. Here we review how functions of electrical synapses vary across circuits and brain regions and depend critically on the context of the neurons and brain circuits involved. Computational modeling of electrical synapses embedded in multi-cellular models and experiments utilizing optical control and measurement of cellular activity will be essential in determining the specific roles performed by electrical synapses in varying contexts.
Collapse
Affiliation(s)
- Mitchell J Vaughn
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
18
|
Gatto E, Loukola OJ, Petrazzini MEM, Agrillo C, Cutini S. Illusional Perspective across Humans and Bees. Vision (Basel) 2022; 6:28. [PMID: 35737416 PMCID: PMC9231007 DOI: 10.3390/vision6020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
For two centuries, visual illusions have attracted the attention of neurobiologists and comparative psychologists, given the possibility of investigating the complexity of perceptual mechanisms by using relatively simple patterns. Animal models, such as primates, birds, and fish, have played a crucial role in understanding the physiological circuits involved in the susceptibility of visual illusions. However, the comprehension of such mechanisms is still a matter of debate. Despite their different neural architectures, recent studies have shown that some arthropods, primarily Hymenoptera and Diptera, experience illusions similar to those humans do, suggesting that perceptual mechanisms are evolutionarily conserved among species. Here, we review the current state of illusory perception in bees. First, we introduce bees' visual system and speculate which areas might make them susceptible to illusory scenes. Second, we review the current state of knowledge on misperception in bees (Apidae), focusing on the visual stimuli used in the literature. Finally, we discuss important aspects to be considered before claiming that a species shows higher cognitive ability while equally supporting alternative hypotheses. This growing evidence provides insights into the evolutionary origin of visual mechanisms across species.
Collapse
Affiliation(s)
- Elia Gatto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Olli J. Loukola
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland;
| | | | - Christian Agrillo
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (M.E.M.P.); (C.A.)
- Department of Developmental and Social Psychology, University of Padova, 35131 Padova, Italy;
| | - Simone Cutini
- Department of Developmental and Social Psychology, University of Padova, 35131 Padova, Italy;
- Padua Neuroscience Center, University of Padova, 35129 Padova, Italy
| |
Collapse
|
19
|
Aldworth ZN, Stopfer M. Insect neuroscience: Filling the knowledge gap on gap junctions. Curr Biol 2022; 32:R420-R423. [DOI: 10.1016/j.cub.2022.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|