1
|
Une R, Uegaki R, Maega S, Ono M, Bito T, Iwasaki T, Shiraishi A, Satake H, Kawano T. FRPR-1, a G protein-coupled receptor in the FMRFamide-related peptide receptor family, modulates larval development as a receptor candidate of the FMRFamide-like peptide FLP-1 in Caenorhabditis elegans. Biosci Biotechnol Biochem 2025; 89:586-593. [PMID: 39814567 DOI: 10.1093/bbb/zbaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
FMRFamide-like peptides (FLPs) and their receptors, FMRFamide-related peptide receptors (FRPRs) are widely conserved in free-living and parasitic nematodes. Herein, we identified FRPR-1 as an FLP-1 receptor candidate involved in larval development and diapause in the model nematode Caenorhabditis elegans. Our molecular genetic study, supported by in silico research, revealed the following: (1) frpr-1 loss-of-function completely suppresses the promotion of larval diapause caused by flp-1 overexpression; (2) AlphaFold2 analysis revealed the binding of FLP-1 to FRPR-1; (3) FRPR-1 as well as FLP-1 modulates the production and secretion of the predominant insulin-like peptide DAF-28, which is produced in ASI neurons; and (4) the suppression of larval diapause by frpr-1 loss-of-function is completely suppressed by a daf-28 defect. Thus, FRPR-1 regulates larval development and diapause by modulating DAF-28 production and secretion. This study may provide new insights into the development of novel nematicides targeting parasitic nematodes using FRPR-1 inhibitors.
Collapse
Affiliation(s)
- Risako Une
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 680-8553 Tottori, Japan
| | - Riko Uegaki
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 680-8553 Tottori, Japan
| | - Sho Maega
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 680-8553 Tottori, Japan
| | - Masahiro Ono
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, 680-8553 Tottori, Japan
| | - Tomohiro Bito
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 680-8553 Tottori, Japan
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, 680-8553 Tottori, Japan
| | - Takashi Iwasaki
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 680-8553 Tottori, Japan
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, 680-8553 Tottori, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 619-0284 Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 619-0284 Kyoto, Japan
| | - Tsuyoshi Kawano
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 680-8553 Tottori, Japan
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, 680-8553 Tottori, Japan
| |
Collapse
|
2
|
Chai CM, Taylor SR, Tischbirek CH, Wong WR, Cai L, Miller DM, Sternberg PW. The forkhead transcription factor FKH-7/FOXP acts in chemosensory neurons to regulate developmental decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638733. [PMID: 40027766 PMCID: PMC11870486 DOI: 10.1101/2025.02.17.638733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Autism is a complex neurodevelopmental disorder with many associated genetic factors, including the forkhead transcription factor FOXP1. Although FOXP1's neuronal role is well-studied, the specific molecular consequences of different FOXP1 pathogenic variants in physiologically-relevant contexts are unknown. Here we ascribe the first function to Caenorhabditis elegans FKH-7/FOXP, which acts in two chemosensory neuron classes to promote the larval decision to enter the alternative, developmentally-arrested dauer life stage. We demonstrate that human FOXP1 can functionally substitute for C. elegans FKH-7 in these neurons and that engineering analogous FOXP1 hypomorphic missense mutations in the endogenous fkh-7 locus also impairs developmental decision-making. In a fkh-7/FOXP1 missense variant, single-cell transcriptomics identifies downregulated expression of autism-associated kcnl-2/KCNN2 calcium-activated potassium channel in a serotonergic sensory neuron. Our findings establish a novel framework linking two evolutionarily-conserved autism-associated genes for deeper characterization of variant-specific molecular pathology at single neuron resolution in the context of a developmental decision-making paradigm.
Collapse
Affiliation(s)
- Cynthia M. Chai
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
- Present address: Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY 10027, USA
| | - Seth R. Taylor
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Present address: Department of Cell Biology & Physiology, Brigham Young University, 4005 Life Sciences Building, Provo, UT 84602, USA
| | - Carsten H. Tischbirek
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Wan-Rong Wong
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Long Cai
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - David M. Miller
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Program in Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Paul W. Sternberg
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
- Lead contact
| |
Collapse
|
3
|
Wyss LS, Bray SR, Wang B. Neuropeptide-mediated temporal sensory filtering in a primordial nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628859. [PMID: 39764011 PMCID: PMC11702643 DOI: 10.1101/2024.12.17.628859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Sensory filtering - prioritizing relevant stimuli while ignoring irrelevant ones - is crucial for animals to adapt and survive in complex environments. While this phenomenon has been primarily studied in organisms with complex nervous systems, it remains unclear whether simpler organisms also possess such capabilities. Here, we studied temporal information processing in Schmidtea mediterranea, a freshwater planarian flatworm with a primitive nervous system. Using long-term behavioral imaging and oscillatory ultraviolet (UV) light stimulations with rhythms matching the timescale of the animal's short-term memory (~minutes), we observed that planarians initially ignored rhythmic oscillations in UV intensity but eventually began tracking them after several cycles, demonstrating sensory filtering. We identified two neuropeptides, knockdown of which eliminated the initial ignoring phase and led to immediate stimulus-tracking, suggesting that these neuropeptides mediate an active sensory gating mechanism preventing response to transient fluctuations in stimuli. Notably, when UV stimulation was coupled with synchronous visible light oscillations, the planarians tracked the combined signals immediately, indicating that coherence across sensory modalities can override the initial gating. Our findings demonstrate that even simple nervous systems can filter temporal information and that this mechanism is mediated by neuropeptides. Unlike classical fast-acting small-molecule neurotransmitters, neuropeptides provide a slower, sustained, and global form of modulation that allows for more sophisticated control of sensory processing. Significance statement We show that simple nervous systems can use specific neuropeptides to achieve sensory filtering, a behavior previously thought to require complex brain architecture. This neuropeptide-mediated sensory gating mechanism reveals a fundamental role for neuropeptides in temporal information processing, offering insights into the mechanistic and evolutionary origins of attention-like behaviors.
Collapse
Affiliation(s)
| | | | - Bo Wang
- Department of Bioengineering, Stanford University
| |
Collapse
|
4
|
Watteyne J, Chudinova A, Ripoll-Sánchez L, Schafer WR, Beets I. Neuropeptide signaling network of Caenorhabditis elegans: from structure to behavior. Genetics 2024; 228:iyae141. [PMID: 39344922 PMCID: PMC11538413 DOI: 10.1093/genetics/iyae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Neuropeptides are abundant signaling molecules that control neuronal activity and behavior in all animals. Owing in part to its well-defined and compact nervous system, Caenorhabditis elegans has been one of the primary model organisms used to investigate how neuropeptide signaling networks are organized and how these neurochemicals regulate behavior. We here review recent work that has expanded our understanding of the neuropeptidergic signaling network in C. elegans by mapping the evolutionary conservation, the molecular expression, the receptor-ligand interactions, and the system-wide organization of neuropeptide pathways in the C. elegans nervous system. We also describe general insights into neuropeptidergic circuit motifs and the spatiotemporal range of peptidergic transmission that have emerged from in vivo studies on neuropeptide signaling. With efforts ongoing to chart peptide signaling networks in other organisms, the C. elegans neuropeptidergic connectome can serve as a prototype to further understand the organization and the signaling dynamics of these networks at organismal level.
Collapse
Affiliation(s)
- Jan Watteyne
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| | | | - Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Psychiatry, Cambridge University, Cambridge CB2 0SZ, UK
| | - William R Schafer
- Department of Biology, University of Leuven, Leuven 3000, Belgium
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Isabel Beets
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
5
|
Vötterl JC, Schwartz-Zimmermann HE, Lerch F, Yosi F, Sharma S, Aigensberger M, Rennhofer PM, Berthiller F, Metzler-Zebeli BU. Variations in colostrum metabolite profiles in association with sow parity. Transl Anim Sci 2024; 8:txae062. [PMID: 38863596 PMCID: PMC11165641 DOI: 10.1093/tas/txae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/26/2024] [Indexed: 06/13/2024] Open
Abstract
Information about the full spectrum of metabolites present in porcine colostrum and factors that influence metabolite abundances is still incomplete. Parity number appears to modulate the concentration of single metabolites in colostrum. This study aimed to 1) characterize the metabolome composition and 2) assess the effect of parity on metabolite profiles in porcine colostrum. Sows (n = 20) were divided into three parity groups: A) sows in parity 1 and 2 (n = 8), B) sows in parity 3 and 4 (n = 6), and C) sows in parity 5 and 6 (n = 6). Colostrum was collected within 12 h after parturition. A total of 125 metabolites were identified using targeted reversed-phase high-performance liquid chromatography-tandem mass spectrometry and anion-exchange chromatography-high resolution mass spectrometry. Gas chromatography additionally identified 19 fatty acids (FAs). Across parities, colostrum was rich in creatine and creatinine, 1,3-dioleyl-2-palmitatoylglycerol, 1,3-dipalmitoyl-2-oleoylglycerol, and sialyllactose. Alterations in colostrum concentrations were found for eight metabolites among parity groups (P < 0.05) but the effects were not linear. For instance, colostrum from parity group C comprised 75.4% more valine but 15.7%, 34.1%, and 47.9% less citric, pyruvic, and pyroglutamic acid, respectively, compared to group A (P < 0.05). By contrast, colostrum from parity group B contained 39.5% more spermidine than from group A (P < 0.05). Of the FAs, C18:1, C16:0, and C18:2 n6 were the main FAs across parities. Parity affected four FAs (C18:3n3, C14:1, C17:0ai, and C17:1), including 43.1% less α-linolenic acid (C18:3n3) in colostrum from parity group C compared to groups A and B (P < 0.05). Signature feature ranking identified 1-stearoyl-2-hydroxy-sn-glycero-3-phosphatidylcholine and the secondary bile acid hyodeoxycholic acid as the most discriminative metabolites, showing a higher variable importance in the projection score in colostrum from parity group A than from groups B and C. Overall, results provided a comprehensive overview about the metabolome composition of sow colostrum. The consequences of the changes in colostrum metabolites with increasing parity for the nutrient supply of the piglets should be investigated in the future. The knowledge gained in this study could be used to optimize feeding strategies for sows.
Collapse
Affiliation(s)
- Julia C Vötterl
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Heidi E Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria
| | - Frederike Lerch
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, >University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Fitra Yosi
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Animal Science, Faculty of Agriculture, University of Sriwijaya, 30662 Palembang, Indonesia
| | - Suchitra Sharma
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Markus Aigensberger
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria
| | - Patrick M Rennhofer
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria
| | - Barbara U Metzler-Zebeli
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
6
|
Istiban MN, De Fruyt N, Kenis S, Beets I. Evolutionary conserved peptide and glycoprotein hormone-like neuroendocrine systems in C. elegans. Mol Cell Endocrinol 2024; 584:112162. [PMID: 38290646 PMCID: PMC11004728 DOI: 10.1016/j.mce.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.
Collapse
Affiliation(s)
- Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Godoy LF, Hochbaum D. Transcriptional and spatiotemporal regulation of the dauer program. Transcription 2023; 14:27-48. [PMID: 36951297 PMCID: PMC10353326 DOI: 10.1080/21541264.2023.2190295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Caenorhabditis elegans can enter a diapause stage called "dauer" when it senses that the environment is not suitable for development. This implies a detour from the typical developmental trajectory and requires a tight control of the developmental clock and a massive tissue remodeling. In the last decades, core components of the signaling pathways that govern the dauer development decision have been identified, but the tissues where they function for the acquisition of dauer-specific traits are still under intense study. Growing evidence demonstrates that these pathways engage in complex cross-talk and feedback loops. In this review, we summarize the current knowledge regarding the transcriptional regulation of the dauer program and the relevant tissues for its achievement. A better understanding of this process will provide insight on how developmental plasticity is achieved and how development decisions are under a robust regulation to ensure an all-or-nothing response. Furthermore, this developmental decision can also serve as a simplified model for relevant developmental disorders.Abbreviations: AID Auxin Induced Degron DA dafachronic acid Daf-c dauer formation constitutive Daf-d dauer formation defective DTC Distal Tip Cells ECM modified extracellular matrix GPCRs G protein-coupled receptors IIS insulin/IGF-1 signaling ILPs insulin-like peptides LBD Ligand Binding Domain PDL4 Post Dauer L4 TGF-β transforming growth factor beta WT wild-type.
Collapse
Affiliation(s)
- Luciana F Godoy
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
8
|
Bechtel W, Bich L. Using neurons to maintain autonomy: Learning from C. elegans. Biosystems 2023; 232:105017. [PMID: 37666409 DOI: 10.1016/j.biosystems.2023.105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Understanding how biological organisms are autonomous-maintain themselves far from equilibrium through their own activities-requires understanding how they regulate those activities. In multicellular animals, such control can be exercised either via endocrine signaling through the vasculature or via neurons. In C. elegans this control is exercised by a well-delineated relatively small but distributed nervous system that relies on both chemical and electric transmission of signals. This system provides resources to integrate information from multiple sources as needed to maintain the organism. Especially important for the exercise of neural control are neuromodulators, which we present as setting agendas for control through more traditional electrical signaling. To illustrate how the C. elegans nervous system integrates multiple sources of information in controlling activities important for autonomy, we focus on feeding behavior and responses to adverse conditions. We conclude by considering how a distributed nervous system without a centralized controller is nonetheless adequate for autonomy.
Collapse
Affiliation(s)
- William Bechtel
- Department of Philosophy; University of California, San Diego; La Jolla, CA 92093-0119, USA.
| | - Leonardo Bich
- IAS-Research Centre for Life, Mind and Society; Department of Philosophy; University of the Basque Country (UPV/EHU); Avenida de Tolosa 70; Donostia-San Sebastian, 20018; Spain.
| |
Collapse
|
9
|
Ono M, Matsushita K, Maega S, Asano N, Matsunaga Y, Bito T, Iwasaki T, Kawano T. The G protein-coupled receptor neuropeptide receptor-15 modulates larval development via the transforming growth factor-β DAF-7 protein in Caenorhabditis elegans. Biochem Biophys Res Commun 2023; 660:28-34. [PMID: 37060828 DOI: 10.1016/j.bbrc.2023.03.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
G protein-coupled receptors (GPCRs) are a major class of membrane receptors that modulate a wide range of physiological functions. These receptors transmit extracellular signals, including secreted bioactive peptides, to intracellular signaling pathways. The nematode Caenorhabditis elegans has FMRFamide-like peptides, which are one of the most diverse neuropeptide families, some of which modulate larval development through GPCRs. In this study, we identified the GPCR neuropeptide receptor (NPR)-15, which modulates C. elegans larval development. Our molecular genetic analyses indicated the following: 1) NPR-15 mainly functions in ASI neurons, which predominantly regulate larval development, 2) NPR-15 interacts with GPA-4, a C. elegans Gα subunit, and 3) NPR-15, along with GPA-4, modulates larval development by regulating the production and secretion of the transforming growth factor-β (TGF-β)-like protein DAF-7. The present study is the first report to demonstrate the importance of a GPCR to the direct regulation of a TGF-β-like protein.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Bioresources Science, The United Graduate School of Agriculture, Japan
| | - Kenjiro Matsushita
- Department of Agricultural Science, Graduate School of Sustainability Science, Japan
| | - Sho Maega
- Department of Bioscience, Biotechnology, and Agrochemistry, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Naoto Asano
- Department of Bioscience, Biotechnology, and Agrochemistry, Faculty of Agriculture, Tottori University, Tottori, Japan
| | | | - Tomohiro Bito
- Department of Bioresources Science, The United Graduate School of Agriculture, Japan; Department of Agricultural Science, Graduate School of Sustainability Science, Japan; Department of Bioscience, Biotechnology, and Agrochemistry, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Takashi Iwasaki
- Department of Bioresources Science, The United Graduate School of Agriculture, Japan; Department of Agricultural Science, Graduate School of Sustainability Science, Japan; Department of Bioscience, Biotechnology, and Agrochemistry, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tsuyoshi Kawano
- Department of Bioresources Science, The United Graduate School of Agriculture, Japan; Department of Agricultural Science, Graduate School of Sustainability Science, Japan; Department of Bioscience, Biotechnology, and Agrochemistry, Faculty of Agriculture, Tottori University, Tottori, Japan.
| |
Collapse
|