1
|
Stevens EJ, Li JD, Hector TE, Drew GC, Hoang K, Greenrod STE, Paterson S, King KC. Within-host competition causes pathogen molecular evolution and perpetual microbiota dysbiosis. THE ISME JOURNAL 2025; 19:wraf071. [PMID: 40244062 PMCID: PMC12066030 DOI: 10.1093/ismejo/wraf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Pathogens newly invading a host must compete with resident microbiota. This within-host microbial warfare could lead to more severe disease outcomes or constrain the evolution of virulence. By passaging a widespread pathogen (Staphylococcus aureus) and a natural microbiota community across populations of nematode hosts, we show that the pathogen displaced microbiota and reduced species richness, but maintained its virulence across generations. Conversely, pathogen populations and microbiota passaged in isolation caused more host harm relative to their respective no-host controls. For the evolved pathogens, this increase in virulence was partly mediated by enhanced biofilm formation and expression of the global virulence regulator agr. Whole genome sequencing revealed shifts in the mode of selection from directional (on pathogens evolving in isolation) to fluctuating (on pathogens evolving in host microbiota). This approach also revealed that competitive interactions with the microbiota drove early pathogen genomic diversification. Metagenome sequencing of the passaged microbiota shows that evolution in pathogen-infected hosts caused a significant reduction in community stability (dysbiosis), along with restrictions on the co-existence of some species based on nutrient competition. Our study reveals how microbial competition during novel infection could determine the patterns and processes of evolution with major consequences for host health.
Collapse
Affiliation(s)
- Emily J Stevens
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Jingdi D Li
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Tobias E Hector
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Georgia C Drew
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Kim Hoang
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Samuel T E Greenrod
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Steve Paterson
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, Wirral, CH64 7TE, United Kingdom
| | - Kayla C King
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
2
|
Banerjee R, Askenasy I, Mettert EL, Kiley PJ. Iron-sulfur Rrf2 transcription factors: an emerging versatile platform for sensing stress. Curr Opin Microbiol 2024; 82:102543. [PMID: 39321716 DOI: 10.1016/j.mib.2024.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024]
Abstract
The widespread family of Rrf2 transcription factors has emerged as having prominent roles in diverse bacterial functions. These proteins share an overall common structure to sense and respond to stress signals. In many known cases, signaling occurs through iron-sulfur cluster cofactors. Recent research has highlighted distinct characteristics of individual family members that have enabled the Rrf2 family as a whole to sense a diverse array of stresses and subsequently alter gene expression to maintain homeostasis. Here, we review unique traits of four Rrf2 family members (IscR, NsrR, RisR, and RirA), which include iron-sulfur ligation schemes, stress-sensing mechanisms, protein conformation changes, and differential gene regulation, that allow these transcription factors to rapidly respond to environmental cues routinely encountered by bacteria.
Collapse
Affiliation(s)
- Rajdeep Banerjee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Isabel Askenasy
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Erin L Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
3
|
Mettert EL, Kiley PJ. Fe-S cluster homeostasis and beyond: The multifaceted roles of IscR. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119749. [PMID: 38763301 PMCID: PMC11309008 DOI: 10.1016/j.bbamcr.2024.119749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024]
Abstract
The role of IscR in regulating the transcription of genes involved in Fe-S cluster homeostasis has been well established for the model organism Escherichia coli K12. In this bacterium, IscR coordinates expression of the Isc and Suf Fe-S cluster assembly pathways to meet cellular Fe-S cluster demands shaped by a variety of environmental cues. However, since its initial discovery nearly 25 years ago, there has been growing evidence that IscR function extends well beyond Fe-S cluster homeostasis, not only in E. coli, but in bacteria of diverse lifestyles. Notably, pathogenic bacteria have exploited the ability of IscR to respond to changes in oxygen tension, oxidative and nitrosative stress, and iron availability to navigate their trajectory in their respective hosts as changes in these cues are frequently encountered during host infection. In this review, we highlight these broader roles of IscR in different cellular processes and, in particular, discuss the importance of IscR as a virulence factor for many bacterial pathogens.
Collapse
Affiliation(s)
- Erin L Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Bhat A, Cox RL, Hendrickson BG, Das NK, Schaller ML, Tuckowski AM, Wang E, Shah YM, Leiser SF. A diet of oxidative stress-adapted bacteria improves stress resistance and lifespan in C. elegans via p38-MAPK. SCIENCE ADVANCES 2024; 10:eadk8823. [PMID: 38569037 PMCID: PMC10990273 DOI: 10.1126/sciadv.adk8823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Organisms across taxa face stresses including variable temperature, redox imbalance, and xenobiotics. Successfully responding to stress and restoring homeostasis are crucial for survival. Aging is associated with a decreased stress response and alterations in the microbiome, which contribute to disease development. Animals and their microbiota share their environment; however, microbes have short generation time and can rapidly evolve and potentially affect host physiology during stress. Here, we leverage Caenorhabditis elegans and its simplified bacterial diet to demonstrate how microbial adaptation to oxidative stress affects the host's lifespan and stress response. We find that worms fed stress-evolved bacteria exhibit enhanced stress resistance and an extended lifespan. Through comprehensive genetic and metabolic analysis, we find that iron in stress-evolved bacteria enhances worm stress resistance and lifespan via activation of the mitogen-activated protein kinase pathway. In conclusion, our study provides evidence that understanding microbial stress-mediated adaptations could be used to slow aging and alleviate age-related health decline.
Collapse
Affiliation(s)
- Ajay Bhat
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca L. Cox
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nupur K. Das
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megan L. Schaller
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Angela M. Tuckowski
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily Wang
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yatrik M. Shah
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott F. Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Abstract
A massive number of microorganisms, belonging to different species, continuously divide inside the guts of animals and humans. The large size of these communities and their rapid division times imply that we should be able to watch microbial evolution in the gut in real time, in a similar manner to what has been done in vitro. Here, we review recent findings on how natural selection shapes intrahost evolution (also known as within-host evolution), with a focus on the intestines of mice and humans. The microbiota of a healthy host is not as static as initially thought from the information measured at only one genomic marker. Rather, the genomes of each gut-colonizing species can be highly dynamic, and such dynamism seems to be related to the microbiota species diversity. Genetic and bioinformatic tools, and analysis of time series data, allow quantification of the selection strength on emerging mutations and horizontal transfer events in gut ecosystems. The drivers and functional consequences of gut evolution can now begin to be grasped. The rules of this intrahost microbiota evolution, and how they depend on the biology of each species, need to be understood for more effective development of microbiota therapies to help maintain or restore host health.
Collapse
Affiliation(s)
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
6
|
Xiao L, Tang R, Wang J, Wan D, Yin Y, Xie L. Gut microbiota bridges the iron homeostasis and host health. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1952-1975. [PMID: 37515687 DOI: 10.1007/s11427-022-2302-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/08/2023] [Indexed: 07/31/2023]
Abstract
The gut microbiota acts as a symbiotic microecosystem that plays an indispensable role in the regulation of a number of metabolic processes in the host by secreting secondary metabolites and impacting the physiology and pathophysiology of numerous organs and tissues through the circulatory system. This relationship, referred to as the "gut-X axis", is associated with the development and progression of disorders, including obesity, fatty liver and Parkinson's disease. Given its importance, the gut flora is a vital research area for the understanding and development of the novel therapeutic approaches for multiple disorders. Iron is a common but necessary element required by both mammals and bacteria. As a result, iron metabolism is closely intertwined with the gut microbiota. The host's iron homeostasis affects the composition of the gut microbiota and the interaction between host and gut microbiota through various mechanisms such as nutrient homeostasis, intestinal peaceability, gut immunity, and oxidative stress. Therefore, understanding the relationship between gut microbes and host iron metabolism is not only of enormous significance to host health but also may offer preventative and therapeutic approaches for a number of disorders that impact both parties. In this review, we delve into the connection between the dysregulation of iron metabolism and dysbiosis of gut microbiota, and how it contributes to the onset and progression of metabolic and chronic diseases.
Collapse
Affiliation(s)
- Lanling Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Rui Tang
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Jie Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, 528308, China.
| |
Collapse
|
7
|
Slack E, Diard M. Resistance is futile? Mucosal immune mechanisms in the context of microbial ecology and evolution. Mucosal Immunol 2022; 15:1188-1198. [PMID: 36329192 PMCID: PMC9705250 DOI: 10.1038/s41385-022-00574-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
In the beginning it was simple: we injected a protein antigen and studied the immune responses against the purified protein. This elegant toolbox uncovered thousands of mechanisms via which immune cells are activated. However, when we consider immune responses against real infectious threats, this elegant simplification misses half of the story: the infectious agents are typically evolving orders-of-magnitude faster than we are. Nowhere is this more pronounced than in the mammalian large intestine. A bacterium representing only 0.1% of the human gut microbiota will have a population size of 109 clones, each actively replicating. Moreover, the evolutionary pressure from other microbes is at least as profound as direct effects of the immune system. Therefore, to really understand intestinal immune mechanisms, we need to understand both the host response and how rapid microbial evolution alters the apparent outcome of the response. In this review we use the examples of intestinal inflammation and secretory immunoglobulin A (SIgA) to highlight what is already known (Fig. 1). Further, we will explore how these interactions can inform immunotherapy and prophylaxis. This has major implications for how we design effective mucosal vaccines against increasingly drug-resistant bacterial pathogens Fig. 1 THE IMMUNE RESPONSE SHAPES THE FITNESS LANDSCAPE IN THE GASTRO-INTESTINAL TRACT.: The red arrows depict possible evolutionary paths of a novel colonizer along adaptive peaks in the intestinal fitness landscapes that change with the status of the host immune system. The flat surfaces represent the non-null fitness baselines (values x or y) at which a bacterium can establish at minimum carrying capacity. a In the healthy gut, metabolic competence, resistance to aggressions by competitors and predators, swift adaptation to rapid fluctuations as well as surviving acidic pH and the flow of the intestinal content, represent potent selective pressures and as many opportunities for bacteria to increase fitness by phenotypic or genetic variations. b When pathogens trigger acute inflammation, bacteria must adapt to iron starvation, killing by immune cells and antimicrobial peptides, and oxidative stress, while new metabolic opportunities emerge. c When high-affinity SIgA are produced against a bacterium, e.g., after oral vaccination, escape of SIgA by altering or losing surface epitopes becomes crucial for maximum fitness. However, escaping polyvalent SIgA responses after vaccination with "evolutionary trap" vaccines leads to evolutionary trade-offs: A fitness maximum is reached in the vaccinated host gut that represents a major disadvantage for transmission into naïve hosts (fitness diminished below x) (d).
Collapse
Affiliation(s)
- Emma Slack
- Laboratory for Mucosal Immunology, Institute for Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland.
- Botnar Research Institute for Child Health, Basel, Switzerland.
| | - Médéric Diard
- Botnar Research Institute for Child Health, Basel, Switzerland.
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|