1
|
Chakraborty S, Strachan J, Schirmeisen K, Besse L, Mercier E, Fréon K, Zhang H, Zhao N, Bayne EH, Lambert SAE. The fission yeast SUMO-targeted ubiquitin ligase Slx8 functionally associates with clustered centromeres and the silent mating-type region at the nuclear periphery. Biol Open 2024; 13:bio061746. [PMID: 39786922 PMCID: PMC11708773 DOI: 10.1242/bio.061746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates. In order to study the dynamic dialectic between ubiquitinylation and SUMOylation in the nuclear space of the S. pombe genome, we analyzed Slx8 localization. Unexpectedly, we did not detect replication stress-induced Slx8 foci. However, we discovered that Slx8 forms a single nuclear focus, enriched at the nuclear periphery, which marks both clustered centromeres at the spindle pole body and the silent mating-type region. The formation of this single Slx8 focus requires the E3 SUMO ligase Pli1, poly-SUMOylation and the histone methyl transferase Clr4 that is responsible for the heterochromatin histone mark H3-K9 methylation. Finally, we established that Slx8 promotes centromere clustering and gene silencing at heterochromatin domains. Altogether, our data highlight evolutionarily conserved and functional relationships between STUbL and heterochromatin domains to promote gene silencing and nuclear organization.
Collapse
Affiliation(s)
- Shrena Chakraborty
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
| | - Joanna Strachan
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Kamila Schirmeisen
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
| | - Laetitia Besse
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - Eve Mercier
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
| | - Karine Fréon
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
| | - Haidao Zhang
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Ning Zhao
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Elizabeth H. Bayne
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Sarah A. E. Lambert
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
- Equipe Labélisée Ligue Nationale Contre le Cancer, 91400 Orsay, France
| |
Collapse
|
2
|
Chabot BJ, Sun R, Amjad A, Hoyt SJ, Ouyang L, Courret C, Drennan R, Leo L, Larracuente AM, Core LJ, O'Neill RJ, Mellone BG. Transcription of a centromere-enriched retroelement and local retention of its RNA are significant features of the CENP-A chromatin landscape. Genome Biol 2024; 25:295. [PMID: 39558354 PMCID: PMC11575011 DOI: 10.1186/s13059-024-03433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Centromeres depend on chromatin containing the conserved histone H3 variant CENP-A for function and inheritance, while the role of centromeric DNA repeats remains unclear. Retroelements are prevalent at centromeres across taxa and represent a potential mechanism for promoting transcription to aid in CENP-A incorporation or for generating RNA transcripts to maintain centromere integrity. RESULTS In this study, we probe into the transcription and RNA localization of the centromere-enriched retroelement G2/Jockey-3 (hereafter referred to as Jockey-3) in Drosophila melanogaster, currently the only in vivo model with assembled centromeres. We find that Jockey-3 is a major component of the centromeric transcriptome and produces RNAs that localize to centromeres in metaphase. Leveraging the polymorphism of Jockey-3 and a de novo centromere system, we show that these RNAs remain associated with their cognate DNA sequences in cis, suggesting they are unlikely to perform a sequence-specific function at all centromeres. We show that Jockey-3 transcription is positively correlated with the presence of CENP-A and that recent Jockey-3 transposition events have occurred preferentially at CENP-A-containing chromatin. CONCLUSIONS We propose that Jockey-3 preferentially inserts at the centromere to ensure its own selfish propagation, while contributing to transcription across these regions. Given the conservation of retroelements as centromere components through evolution, our findings may offer a basis for understanding similar associations in other species.
Collapse
Affiliation(s)
- B J Chabot
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - R Sun
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - A Amjad
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - S J Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - L Ouyang
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - C Courret
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - R Drennan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - L Leo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185, Rome, Italy
- Present Address: RNA Editing Lab, Onco-Haematology Department, Genetics and Epigenetics of Pediatric Cancers, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - A M Larracuente
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - L J Core
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - R J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - B G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
3
|
Santinello B, Sun R, Amjad A, Hoyt SJ, Ouyang L, Courret C, Drennan R, Leo L, Larracuente AM, Core L, O'Neill RJ, Mellone BG. Transcription of a centromere-enriched retroelement and local retention of its RNA are significant features of the CENP-A chromatin landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.574223. [PMID: 38293134 PMCID: PMC10827089 DOI: 10.1101/2024.01.14.574223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Centromeres depend on chromatin containing the conserved histone H3 variant CENP-A for function and inheritance, while the role of centromeric DNA repeats remains unclear. Retroelements are prevalent at centromeres across taxa and represent a potential mechanism for promoting transcription to aid in CENP-A incorporation or for generating RNA transcripts to maintain centromere integrity. Here, we probe into the transcription and RNA localization of the centromere-enriched retroelement G2/Jockey-3 (hereafter referred to as Jockey-3 ) in Drosophila melanogaster , currently the only in vivo model with assembled centromeres. We find that Jockey-3 is a major component of the centromeric transcriptome and produces RNAs that localize to centromeres in metaphase. Leveraging the polymorphism of Jockey-3 and a de novo centromere system, we show that these RNAs remain associated with their cognate DNA sequences in cis , suggesting they are unlikely to perform a sequence-specific function at all centromeres. We show that Jockey-3 transcription is positively correlated with the presence of CENP-A, and that recent Jockey-3 transposition events have occurred preferentially at CENP-A-containing chromatin. We propose that Jockey-3 contributes to the epigenetic maintenance of centromeres by promoting chromatin transcription, while inserting preferentially within these regions, selfishly ensuring its continued expression and transmission. Given the conservation of retroelements as centromere components through evolution, our findings have broad implications in understanding this association in other species.
Collapse
|
4
|
Strachan J, Leidecker O, Spanos C, Le Coz C, Chapman E, Arsenijevic A, Zhang H, Zhao N, Spoel SH, Bayne EH. SUMOylation regulates Lem2 function in centromere clustering and silencing. J Cell Sci 2023; 136:jcs260868. [PMID: 37970674 PMCID: PMC10730020 DOI: 10.1242/jcs.260868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
Regulation by the small modifier SUMO is heavily dependent on spatial control of enzymes that mediate the attachment and removal of SUMO on substrate proteins. Here, we show that in the fission yeast Schizosaccharomyces pombe, delocalisation of the SUMO protease Ulp1 from the nuclear envelope results in centromeric defects that can be attributed to hyper-SUMOylation at the nuclear periphery. Unexpectedly, we find that although this localised hyper-SUMOylation impairs centromeric silencing, it can also enhance centromere clustering. Moreover, both effects are at least partially dependent on SUMOylation of the inner nuclear membrane protein Lem2. Lem2 has previously been implicated in diverse biological processes, including the promotion of both centromere clustering and silencing, but how these distinct activities are coordinated was unclear; our observations suggest a model whereby SUMOylation serves as a regulatory switch, modulating Lem2 interactions with competing partner proteins to balance its roles in alternative pathways. Our findings also reveal a previously unappreciated role for SUMOylation in promoting centromere clustering.
Collapse
Affiliation(s)
- Joanna Strachan
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Orsolya Leidecker
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Christos Spanos
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Clementine Le Coz
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Elliott Chapman
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Ana Arsenijevic
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Haidao Zhang
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Ning Zhao
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Steven H. Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Elizabeth H. Bayne
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| |
Collapse
|
5
|
London N, Medina-Pritchard B, Spanos C, Rappsilber J, Jeyaprakash AA, Allshire RC. Direct recruitment of Mis18 to interphase spindle pole bodies promotes CENP-A chromatin assembly. Curr Biol 2023; 33:4187-4201.e6. [PMID: 37714149 DOI: 10.1016/j.cub.2023.08.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
CENP-A chromatin specifies mammalian centromere identity, and its chaperone HJURP replenishes CENP-A when recruited by the Mis18 complex (Mis18C) via M18BP1/KNL2 to CENP-C at kinetochores during interphase. However, the Mis18C recruitment mechanism remains unresolved in species lacking M18BP1, such as fission yeast. Fission yeast centromeres cluster at G2 spindle pole bodies (SPBs) when CENP-ACnp1 is replenished and where Mis18C also localizes. We show that SPBs play an unexpected role in concentrating Mis18C near centromeres through the recruitment of Mis18 by direct binding to the major SPB linker of nucleoskeleton and cytoskeleton (LINC) component Sad1. Mis18C recruitment by Sad1 is important for CENP-ACnp1 chromatin establishment and acts in parallel with a CENP-C-mediated Mis18C recruitment pathway to maintain centromeric CENP-ACnp1 but operates independently of Sad1-mediated centromere clustering. SPBs therefore provide a non-chromosomal scaffold for both Mis18C recruitment and centromere clustering during G2. This centromere-independent Mis18-SPB recruitment provides a mechanism that governs de novo CENP-ACnp1 chromatin assembly by the proximity of appropriate sequences to SPBs and highlights how nuclear spatial organization influences centromere identity.
Collapse
Affiliation(s)
- Nitobe London
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Bethan Medina-Pritchard
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK; Institute of Biotechnology, Technische Universität, 13355 Berlin, Germany
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK; Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
6
|
Kramer HM, Cook DE, Seidl MF, Thomma BP. Epigenetic regulation of nuclear processes in fungal plant pathogens. PLoS Pathog 2023; 19:e1011525. [PMID: 37535497 PMCID: PMC10399791 DOI: 10.1371/journal.ppat.1011525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Through the association of protein complexes to DNA, the eukaryotic nuclear genome is broadly organized into open euchromatin that is accessible for enzymes acting on DNA and condensed heterochromatin that is inaccessible. Chemical and physical alterations to chromatin may impact its organization and functionality and are therefore important regulators of nuclear processes. Studies in various fungal plant pathogens have uncovered an association between chromatin organization and expression of in planta-induced genes that are important for pathogenicity. This review discusses chromatin-based regulation mechanisms as determined in the fungal plant pathogen Verticillium dahliae and relates the importance of epigenetic transcriptional regulation and other nuclear processes more broadly in fungal plant pathogens.
Collapse
Affiliation(s)
- H. Martin Kramer
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - David E. Cook
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Michael F. Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Bart P.H.J. Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| |
Collapse
|
7
|
Kuse R, Ishii K. Flexible Attachment and Detachment of Centromeres and Telomeres to and from Chromosomes. Biomolecules 2023; 13:1016. [PMID: 37371596 DOI: 10.3390/biom13061016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Accurate transmission of genomic information across multiple cell divisions and generations, without any losses or errors, is fundamental to all living organisms. To achieve this goal, eukaryotes devised chromosomes. Eukaryotic genomes are represented by multiple linear chromosomes in the nucleus, each carrying a centromere in the middle, a telomere at both ends, and multiple origins of replication along the chromosome arms. Although all three of these DNA elements are indispensable for chromosome function, centromeres and telomeres possess the potential to detach from the original chromosome and attach to new chromosomal positions, as evident from the events of telomere fusion, centromere inactivation, telomere healing, and neocentromere formation. These events seem to occur spontaneously in nature but have not yet been elucidated clearly, because they are relatively infrequent and sometimes detrimental. To address this issue, experimental setups have been developed using model organisms such as yeast. In this article, we review some of the key experiments that provide clues as to the extent to which these paradoxical and elusive features of chromosomally indispensable elements may become valuable in the natural context.
Collapse
Affiliation(s)
- Riku Kuse
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology, Kochi 782-8502, Japan
| | - Kojiro Ishii
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology, Kochi 782-8502, Japan
| |
Collapse
|
8
|
Fukagawa T, Kakutani T. Transgenerational epigenetic control of constitutive heterochromatin, transposons, and centromeres. Curr Opin Genet Dev 2023; 78:102021. [PMID: 36716679 DOI: 10.1016/j.gde.2023.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/30/2023]
Abstract
Epigenetic mechanisms are important not only for development but also for genome stability and chromosome dynamics. The latter types of epigenetic controls can often be transgenerational. Here, we review recent progress in two examples of transgenerational epigenetic control: i) the control of constitutive heterochromatin and transposable elements and ii) epigenetic mechanisms that regulate centromere specification and functions. We also discuss the biological significance of enigmatic associations among centromeres, transposons, and constitutive heterochromatin.
Collapse
Affiliation(s)
- Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan. https://twitter.com/tatsuofukagawa1
| | - Tetsuji Kakutani
- Department of Biological Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
9
|
Gavade JN, Black BE. Chromosomes: A nuclear neighborhood conducive to centromere formation. Curr Biol 2022; 32:R776-R778. [PMID: 35882197 DOI: 10.1016/j.cub.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Centromere identity is specified by nucleosomes containing the histone variant CENP-A. A new study reveals that subnuclear location dictates the efficiency with which a new centromere forms.
Collapse
Affiliation(s)
- Janardan N Gavade
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|