1
|
Wu YC, Beets I, Fox BW, Fajardo Palomino D, Chen L, Liao CP, Vandewyer E, Lin LY, He CW, Chen LT, Lin CT, Schroeder FC, Pan CL. Intercellular sphingolipid signaling mediates aversive learning in C. elegans. Curr Biol 2025; 35:2323-2336.e9. [PMID: 40252647 DOI: 10.1016/j.cub.2025.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/02/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
Physiological stress in non-neural tissues drives aversive learning for sensory cues associated with stress. However, the identities of signals derived from non-neural tissues and the mechanisms by which these signals mediate aversive learning remain elusive. Here, we show that intercellular sphingolipid signaling contributes to aversive learning under mitochondrial stress in C. elegans. We found that stress-induced aversive learning requires sphingosine kinase, SPHK-1, the enzyme that produces sphingosine-1-phosphate (S1P). Genetic and biochemical studies revealed an intercellular signaling pathway in which intestinal or hypodermal SPHK-1 signals through the neuronal G protein-coupled receptor, SPHR-1, and modulates responses of the octopaminergic RIC neuron to promote aversive learning. We further show that SPHK-1-mediated sphingolipid signaling is required for learned aversion of Chryseobacterium indologenes, a bacterial pathogen found in the natural habitats of C. elegans, which causes mitochondrial stress. Taken together, our work reveals a sphingolipid signaling pathway that communicates from intestinal or hypodermal tissues to neurons to promote aversive learning in response to mitochondrial stress and pathogen infection.
Collapse
Affiliation(s)
- Yu-Chun Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Isabel Beets
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Bennett William Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Li Chen
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Chien-Po Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Elke Vandewyer
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Liang-Yi Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chun-Wei He
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Tzu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chih-Ta Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| |
Collapse
|
2
|
Wang PZ, Ge MH, Su P, Wu PP, Wang L, Zhu W, Li R, Liu H, Wu JJ, Xu Y, Zhao JL, Li SJ, Wang Y, Chen LM, Wu TH, Wu ZX. Sensory plasticity caused by up-down regulation encodes the information of short-term learning and memory. iScience 2025; 28:112215. [PMID: 40224011 PMCID: PMC11987006 DOI: 10.1016/j.isci.2025.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Learning and memory are essential for animals' well-being and survival. The underlying mechanisms are a major task of neuroscience studies. In this study, we identified a circuit consisting of ASER, RIC, RIS, and AIY, is required for short-term salt chemotaxis learning (SCL) in C. elegans. ASER NaCl-sensation possesses are remodeled by salt/food-deprivation pared conditioning. RIC integrates the sensory information of NaCl and food availability. It excites ASER and inhibits AIY by tyramine/TYRA-2 and octopamine/OCTR-1 signaling pathways, respectively. By the salt conditioning, RIC NaCl calcium response to NaCl is depressed, thus, the RIC excitation of ASER and inhibition of AIY are suppressed. ASER excites RIS by FLP-14/FRPR-10 signaling. RIS inhibits ASER via PDF-2/PDFR-1 signaling in negative feedback. ASER sensory plasticity caused by RIC plasticity and RIS negative feedback are required for both learning and memory recall. Thus, the sensation plasticity encodes the information of the short-term SCL that facilitates animal adaptation to dynamic environments.
Collapse
Affiliation(s)
- Ping-Zhou Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Piao-Ping Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Lu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Jia Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tai-Hong Wu
- Hunan Research Center of the Basic Discipline for Cell Signaling, State Key Laboratory of Chemo and Biosensing, College of Biology, Hunan University, Changsha, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Cohen N, Rabinowitch I. Resolving transitions between distinct phases of memory consolidation at high resolution in Caenorhabditis elegans. iScience 2024; 27:111147. [PMID: 39524366 PMCID: PMC11547966 DOI: 10.1016/j.isci.2024.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/26/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Memory consolidation following learning is a dynamic and complex process comprising several transitions between distinct memory phases. Although memory consolidation has been studied extensively, it remains difficult to draw an integral description that can delimit the transition points between specific memory phases at the behavioral, neuronal, and genetic levels. To this end, we have developed a rapid and robust aversive conditioning protocol for the nematode worm Caenorhabditis elegans, tracing memory consolidation within the first hour post conditioning and then up to 18 h post conditioning. This made it possible to uncover time-dependent involvement of primary sensory neurons, transcription and translation processes, and diverse gene populations in memory consolidation. The change in neuronal valence was strong enough to induce second order conditioning, and was amenable to considerable modulation in specific mutant strains. Together, our work lends memory consolidation to detailed temporal and spatial analysis, advancing system-wide understanding of learning and memory.
Collapse
Affiliation(s)
- Netanel Cohen
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| |
Collapse
|
4
|
Wang Y, Sun X, Feng L, Zhang K, Yang W. Nervous system guides behavioral immunity in Caenorhabditis elegans. PeerJ 2024; 12:e18289. [PMID: 39430568 PMCID: PMC11488496 DOI: 10.7717/peerj.18289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Caenorhabditis elegans is a versatile model organism for exploring complex biological systems. Microbes and the external environment can affect the nervous system and drive behavioral changes in C. elegans. For better survival, C. elegans may develop behavioral immunity to avoid potential environmental pathogens. However, the molecular and cellular mechanisms underlying this avoidance behavior are not fully understood. The dissection of sensorimotor circuits in behavioral immunity may promote advancements in research on the neuronal connectome in uncovering neuronal regulators of behavioral immunity. In this review, we discuss how the nervous system coordinates behavioral immunity by translating various pathogen-derived cues and physiological damage to motor output in response to pathogenic threats in C. elegans. This understanding may provide insights into the fundamental principles of immune strategies that can be applied across species and potentially contribute to the development of novel therapies for immune-related diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xuehong Sun
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lixiang Feng
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Kui Zhang
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wenxing Yang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Du Y, Zhao Y, Zhang A, Li Z, Wei C, Zheng Q, Qiao Y, Liu Y, Ren W, Han J, Sun Z, Hu W, Liu Z. The Role of the Mu Opioid Receptors of the Medial Prefrontal Cortex in the Modulation of Analgesia Induced by Acute Restraint Stress in Male Mice. Int J Mol Sci 2024; 25:9774. [PMID: 39337262 PMCID: PMC11431787 DOI: 10.3390/ijms25189774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Mu opioid receptors (MORs) represent a vital mechanism related to the modulation of stress-induced analgesia (SIA). Previous studies have reported on the gamma-aminobutyric acid (GABA)ergic "disinhibition" mechanisms of MORs on the descending pain modulatory pathway of SIA induced in the midbrain. However, the role of the MORs expressed in the medial prefrontal cortex (mPFC), one of the main cortical areas participating in pain modulation, in SIA remains completely unknown. In this study, we investigated the contributions of MORs expressed on glutamatergic (MORGlut) and GABAergic (MORGABA) neurons of the medial prefrontal cortex (mPFC), as well as the functional role and activity of neurons projecting from the mPFC to the periaqueductal gray (PAG) region, in male mice. We achieved this through a combination of hot-plate tests, c-fos staining, and 1 h acute restraint stress exposure tests. The results showed that our acute restraint stress protocol produced mPFC MOR-dependent SIA effects. In particular, MORGABA was found to play a major role in modulating the effects of SIA, whereas MORGlut seemed to be unconnected to the process. We also found that mPFC-PAG projections were efficiently activated and played key roles in the effects of SIA, and their activation was mediated by MORGABA to a large extent. These results indicated that the activation of mPFC MORGABA due to restraint stress was able to activate mPFC-PAG projections in a potential "disinhibition" pathway that produced analgesic effects. These findings provide a potential theoretical basis for pain treatment or drug screening targeting the mPFC.
Collapse
Affiliation(s)
- Yinan Du
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Yukui Zhao
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Aozhuo Zhang
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Zhiwei Li
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Chunling Wei
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Qiaohua Zheng
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Yanning Qiao
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Yihui Liu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Wei Ren
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Jing Han
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Zongpeng Sun
- School of Psychology, Shaanxi Normal University, Xi’an 710062, China
| | - Weiping Hu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| | - Zhiqiang Liu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi’an 710062, China; (Y.D.); (Y.Z.)
| |
Collapse
|
6
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Hajdú G, Szathmári C, Sőti C. Modeling Host-Pathogen Interactions in C. elegans: Lessons Learned from Pseudomonas aeruginosa Infection. Int J Mol Sci 2024; 25:7034. [PMID: 39000143 PMCID: PMC11241598 DOI: 10.3390/ijms25137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csenge Szathmári
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
8
|
Tsai SH, Wu YC, Palomino DF, Schroeder FC, Pan CL. Peripheral peroxisomal β-oxidation engages neuronal serotonin signaling to drive stress-induced aversive memory in C. elegans. Cell Rep 2024; 43:113996. [PMID: 38520690 PMCID: PMC11087011 DOI: 10.1016/j.celrep.2024.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Physiological dysfunction confers negative valence to coincidental sensory cues to induce the formation of aversive associative memory. How peripheral tissue stress engages neuromodulatory mechanisms to form aversive memory is poorly understood. Here, we show that in the nematode C. elegans, mitochondrial disruption induces aversive memory through peroxisomal β-oxidation genes in non-neural tissues, including pmp-4/very-long-chain fatty acid transporter, dhs-28/3-hydroxylacyl-CoA dehydrogenase, and daf-22/3-ketoacyl-CoA thiolase. Upregulation of peroxisomal β-oxidation genes under mitochondrial stress requires the nuclear hormone receptor NHR-49. Importantly, the memory-promoting function of peroxisomal β-oxidation is independent of its canonical role in pheromone production. Peripheral signals derived from the peroxisomes target NSM, a critical neuron for memory formation under stress, to upregulate serotonin synthesis and remodel evoked responses to sensory cues. Our genetic, transcriptomic, and metabolomic approaches establish peroxisomal lipid signaling as a crucial mechanism that connects peripheral mitochondrial stress to central serotonin neuromodulation in aversive memory formation.
Collapse
Affiliation(s)
- Shang-Heng Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yu-Chun Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| |
Collapse
|
9
|
Zhu J, Wang Y, Tang S, Su H, Wang X, Du W, Wang Y, Liu BF. A PDMS-Agar Hybrid Microfluidic Device for the Investigation of Chemical-Mechanical Associative Learning Behavior of C. elegans. MICROMACHINES 2023; 14:1576. [PMID: 37630112 PMCID: PMC10456236 DOI: 10.3390/mi14081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Associative learning is a critical survival trait that promotes behavioral plasticity in response to changing environments. Chemosensation and mechanosensation are important sensory modalities that enable animals to gather information about their internal state and external environment. However, there is a limited amount of research on these two modalities. In this paper, a novel PDMS-agar hybrid microfluidic device is proposed for training and analyzing chemical-mechanical associative learning behavior in the nematode Caenorhabditis elegans. The microfluidic device consisted of a bottom agar gel layer and an upper PDMS layer. A chemical concentration gradient was generated on the agar gel layer, and the PDMS layer served to mimic mechanical stimuli. Based on this platform, C. elegans can perform chemical-mechanical associative learning behavior after training. Our findings indicated that the aversive component of training is the primary driver of the observed associative learning behavior. In addition, the results indicated that the neurotransmitter octopamine is involved in regulating this associative learning behavior via the SER-6 receptor. Thus, the microfluidic device provides a highly efficient platform for studying the associative learning behavior of C. elegans, and it may be applied in mutant screening and drug testing.
Collapse
Affiliation(s)
- Jinchi Zhu
- School of Bioengineering, Huainan Normal University, Huainan 232038, China
| | - Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Shuting Tang
- School of Bioengineering, Huainan Normal University, Huainan 232038, China
| | - Huiying Su
- School of Bioengineering, Huainan Normal University, Huainan 232038, China
| | - Xixian Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yun Wang
- School of Bioengineering, Huainan Normal University, Huainan 232038, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
10
|
Fredj Z, Wang P, Ullah F, Sawan M. A nanoplatform-based aptasensor to electrochemically detect epinephrine produced by living cells. Mikrochim Acta 2023; 190:343. [PMID: 37540351 DOI: 10.1007/s00604-023-05902-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
A novel aptasensor has been designed for quantitative monitoring of epinephrine (EP) based on cerium metal-organic framework (CeMOF) loaded gold nanoparticles (AuNPs). The aptamer, specific to EP, is immobilized on a flexible screen-printed electrode modified with AuNPs@CeMOF, enabling highly selective binding to the target biomolecule. Under optimized operational conditions, the peak currents using voltammetric detection measured at voltage of 83 mV (vs. Ag/AgCl) for epinephrine exhibit a linear increase within concentration in the range 1 pM-10 nM. Following this detection strategy, a boasted limit of detection of 0.3 pM was achieved, surpassing the sensitivity of most reported methods. The developed biosensor showcased exceptional performance in detection of EP in spiked serum sample, with remarkable recovery range of 95.8-113% and precision reflected by low relative standard deviation (RSD) ranging from 2.23 to 6.19%. These results indicate the potential utility of this biosensor as a valuable clinical diagnostic tool. Furthermore, in vitro experiments were carried out using the presented biosensor to monitor the release of epinephrine from PC12 cells upon extracellular stimulation with K+ ions.
Collapse
Affiliation(s)
- Zina Fredj
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Pengbo Wang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Fateh Ullah
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China.
| |
Collapse
|
11
|
Zhao Y, Hua X, Rui Q, Wang D. Exposure to multi-walled carbon nanotubes causes suppression in octopamine signal associated with transgenerational toxicity induction in C.elegans. CHEMOSPHERE 2023; 318:137986. [PMID: 36716936 DOI: 10.1016/j.chemosphere.2023.137986] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Multi-walled carbon nanotube (MWCNT), a kind of carbon-based nanomaterials, has been extensively utilized in a variety of fields. In Caenorhabditis elegans, MWCNT exposure can result in toxicity not only at parental generation (P0-G) but also in the offspring. However, the underlying mechanisms remain still largely unknown. DAF-12, a transcriptional factor (TF), was previously found to be activated and involved in transgenerational toxicity control after MWCNT exposure. In this study, we observed that exposure to 0.1-10 μg/L MWCNTs caused the significant decrease in expression of tbh-1 encoding a tyramine beta-hydroxylase with the function to govern the octopamine synthesis, suggesting the inhibition in octopamine signal. After exposure to 0.1 μg/L MWCNT, the decrease in tbh-1 expression could be also detected in F1-G and F2-G. Moreover, in germline cells, the TF DAF-12 regulated transgenerational MWCNT toxicity by suppressing expression and function of TBH-1. Meanwhile, exposure to 0.1-10 μg/L MWCNTs induced the increase in octr-1 expression and the decrease in ser-6 expression. After exposure to 0.1 μg/L MWCNT, the increased octr-1 expression and the decreased ser-6 expression were further observed in F1-G and F2-G. Germline TBH-1 controlled transgenerational MWCNT toxicity by regulating the activity of octopamine receptors (SER-6 and OCTR-1) in offspring. Furthermore, in the offspring, SER-6 and OCTR-1 affected the induction of MWCNT toxicity by upregulating or downregulating the level of ELT-2, a GATA TF. Taken together, these findings suggested possible link between alteration in octopamine related signals and MWCNT toxicity induction in offspring in organisms.
Collapse
Affiliation(s)
- Yingyue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Hua
- Medical School, Southeast University, Nanjing, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
12
|
Chen YJ, Pan CL. An olfactory-interneuron circuit that drives stress-induced avoidance behavior in C. elegans. Neurosci Res 2022; 191:91-97. [PMID: 36565857 DOI: 10.1016/j.neures.2022.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/23/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Physiological stress represents a drastic change of internal state and can drive avoidance behavior, but the neural circuits are incompletely defined. Here, we characterize a sensory-interneuron circuit for mitochondrial stress-induced avoidance behavior in C. elegans. The olfactory sensory neurons and the AIY interneuron are essential, with the olfactory neurons acting upstream of AIY. Unlike pathogen avoidance, stress-induced avoidance does not require AIB, AIZ or RIA interneurons. Ablation or inhibition of the head motor neurons SMDD/V alters the worm's locomotion and reduces avoidance. These findings substantiate our understanding of the circuit mechanisms that underlie learned avoidance behavior triggered by mitochondrial stress.
Collapse
Affiliation(s)
- Yen-Ju Chen
- Institute of Molecular Medicine and Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine and Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| |
Collapse
|