1
|
Khairy A, Elattaapy AM, Yousef SA, Hamada MS, Amin BH, Elsherbiny EA. Effective biocontrol of Botrytis cinerea by antifungal metabolites of Trichoderma reesei T1 for gray mold in postharvest tomato. Int J Food Microbiol 2025; 436:111203. [PMID: 40220701 DOI: 10.1016/j.ijfoodmicro.2025.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Botrytis cinerea is a serious fungal pathogen that causes gray mold in postharvest tomatoes, leading to voluminous economic losses during storage and transport. Trichoderma reesei T1 has demonstrated an enormous antagonistic activity against B. cinerea by 69.2 % in a dual culture assay. Both culture filtrates and ethyl acetate extract of T. reesei T1 exhibited strong inhibition on the growth, conidial germination, and germ tube elongation of the pathogen. Di(2-ethylhexyl) phthalate, constituting 74.64 % of the extract, was identified as the main component through GC-MS analysis. Gray mold incidence and severity in tomato fruits treated with the filtrates and extract were significantly reduced at all tested concentrations. For example, the disease severity was 8.6 % at 70 % from the filtrate, and 7.6 % at 10 mg mL-1 from the extract after five days in fruits inoculated with B. cinerea. Furthermore, the content of total phenolic and flavonoid compounds in tomato fruits treated with filtrates and extract of T. reesei was remarkably higher levels compared to the untreated group as well as enhancing antioxidant activity during the whole experiment. The treatment with the filtrates and extract also increased the activities of peroxidase (POD), polyphenoloxidase (PPO), and phenylalanine ammonia-lyase (PAL) in tomato fruits throughout the experiment. In conclusion, both filtrates and extract of T. reesei caused a substantial inhibitory effect on gray mold in postharvest tomato fruits. Thus, T. reesei presents a proper alternative to prevent and control tomato postharvest diseases throughout storage time.
Collapse
Affiliation(s)
- Alaa Khairy
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Abdelrahman M Elattaapy
- Agricultural Microbiology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Safaa A Yousef
- Mycology Research and Plant Disease Survey Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Mohamed S Hamada
- Pesticides Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Basma H Amin
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo 11651, Egypt
| | - Elsherbiny A Elsherbiny
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
2
|
Liu Y, Chen Y, Li B, Jing Y, Tian S, Chen T. Revisiting Endoplasmic Reticulum Homeostasis, an Expanding Frontier Between Host Plants and Pathogens. PLANT, CELL & ENVIRONMENT 2025; 48:3281-3292. [PMID: 39722546 DOI: 10.1111/pce.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The endoplasmic reticulum (ER) serves as the primary site for protein biosynthesis and processing, with ER homeostasis being essential for the survival of plant cells. Numerous studies have underscored the pivotal role of the ER as a battleground for host-pathogen interactions. Pathogens secrete effectors to subvert the host ER and manipulate ER-mediated defense responses, fostering an infection-permissive environment for their proliferation. Plants respond to these challenges by triggering ER stress responses, including the unfolded protein response (UPR), autophagy, and cell death pathways, to combat pathogens and ensure survival. Consequently, plants are faced with a life-or-death decision, directly influencing the outcomes of pathogen infection. In this review, recent advances in manipulating host ER homeostasis by pathogens are introduced, further key counteracting strategies employed by host plants to maintain ER homeostasis during infection are summarized, and finally, several pending questions the studies involving both parties in this evolving field are proposed.
Collapse
Affiliation(s)
- Yuhan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Boqiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yanping Jing
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
3
|
Liu K, Liu Y, Liu Y, Huang X, Jia Y, Ji L, Tian S, Chen T. Suppression of ergosterol biosynthesis by dictamnine confers resistance to gray mold on harvested fruit. Food Microbiol 2025; 127:104681. [PMID: 39667853 DOI: 10.1016/j.fm.2024.104681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/27/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Botrytis cinerea is a major cause of postharvest rot in fresh fruits and vegetables worldwide. Consequently, the pursuit of environmentally friendly and efficient alternatives to fungicides has emerged as a hot spot of research. In this study, it was found that dictamnine (DIC, 4-methoxyfuro [2,3-β] quinoline), an active ingredient from Dictamnus dasycarpus Turcz, efficiently inhibited spore germination and mycelial growth of B. cinerea, alleviated the development of lesions caused by B. cinerea on postharvest apples, kiwifruits, cherry tomatoes and strawberries in a dose-dependent manner. RNA sequencing analysis followed by Gene Ontology (GO) term enrichment revealed that functional genes related to cell membrane function were significantly enriched, while most genes associated with ergosterol biosynthesis were down-regulated. Molecular docking indicated that DIC bound to the rate-limiting enzymes BcERG1 (squalene monooxygenase) and BcERG11 (Lanosterol 14-alpha demethylase) at -7.1 and -7.2 kcal mol-1, respectively. Additionally, it was observed that the application of DIC led to a decrease in ergosterol content, which compromised membrane integrity and normal membrane potential. Interestingly, exogenous ergosterol addition partially restored the inhibitory effect of DIC on the germination of B. cinerea spores and the lesion development on apple fruit. Taken together, these results indicate the potential for utilizing DIC as a promising antifungal substitute for controlling gray mold in postharvest fruit.
Collapse
Affiliation(s)
- Kui Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; China National Botanical Garden, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; China National Botanical Garden, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangzhi Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; China National Botanical Garden, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhua Huang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; China National Botanical Garden, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhong Jia
- Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Lizhu Ji
- Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China.
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; China National Botanical Garden, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
4
|
Sui Y, Liao Q, Leng J, Chen Z. Eco-friendly biocontrol strategies for management of postharvest fungal decays in kiwifruit: A review. Int J Food Microbiol 2025; 432:111106. [PMID: 39938239 DOI: 10.1016/j.ijfoodmicro.2025.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/27/2024] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Kiwifruit is known for its rich content of nutrients and significant economic value. Global cultivation of kiwifruit has been increasing along with the amount of land being dedicated to its production. Regrettably, postharvest fungal decays, such as those caused by Botrytis cinerea, Penicillium expansum, Alternaria alternata, Botryosphaeria dothidea, Nigrospora oryzae, and others, pose a significant challenge to the kiwifruit industry, and are responsible for substantial losses during storage, transportation, and local marketing. Biological control of postharvest diseases is seen as a safe and sustainable strategy and as a result has received considerable interest for its potential in disease management. The present review provides an overview of the research conducted on the major postharvest diseases of kiwifruit and the use of biocontrol agents to manage these diseases. It also reviews the status of microbial formulations and the impact of environmental factors on biocontrol efficacy. The need for further research on the utilization of microbial consortia to manage postharvest diseases of kiwifruit is discussed as a major new approach to biological control.
Collapse
Affiliation(s)
- Yuan Sui
- State Key Laboratory of Green Pesticides, Guizhou University, Guiyang, Guizhou 550025, China; Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Qinhong Liao
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Jinsong Leng
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
5
|
Jiao Y, Ling J, Khan RAA, Luo N, Li Z, Li Z, Yang Y, Zhao J, Mao Z, Bills GF, Xie B, Li Y. Genome Mining Reveals Biosynthesis of the Antifungal Lipopeptaibols, Texenomycins, through a Hybrid PKS-NRPS System, in the Fungus Mariannaea elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:226-236. [PMID: 39704078 DOI: 10.1021/acs.jafc.4c08847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Texenomycins are a family of linear lipopeptaibols with a long polyketide side chain at the N-terminus and 21 amino acid residues at the C-terminus, presenting demonstrated potential as antibiotics against plant fungal pathogens. In this study, texenomycins were identified and isolated from the fungus Mariannaea elegans strain TTI-0396 and showed effective antifungal properties against two plant pathogens Colletotrichum lagenarium and Botrytis cinerea. Through analysis of the whole-genome data of M. elegans strain TTI-0396, we discovered a hybrid PKS-NRPS system with the polyketide synthase (PKS: TexQ), thioesterase (TexO), acyl-CoA ligase (TexI), and three nonribosomal peptide synthetases (NRPSs: TexG, TexJ, TexV) in the tex gene cluster that were proposed to be responsible for the biosynthesis of texenomycins and another related lipopeptaibol, lipohexin. The functions of six key genes (texQ, texO, texI, texG, texJ, and texV) in the hybrid PKS-NRPS system were verified by gene deletion experiments, and five genes (texQ, texO, texI, texG, and texV) were confirmed to be responsible for the biosynthesis of texenomycins, while four genes (texQ, texO, texI, and texJ) were involved in the biosynthesis of lipohexin. Furthermore, the function of one transcription factor gene (texR), which enhanced the production of texenomycins by regulating the key genes in the tex gene cluster, was also demonstrated through gene deletion and overexpression experiments. Finally, a hypothetical scheme for texenomycins and lipohexin biosynthesis assembly is proposed. The elucidation of this intricate hybrid PKS-NRPS system has significantly deepened our comprehension of the mechanisms underlying the generation and chemical diversity of fungal lipopeptaibol natural products, offering a promising avenue for future research and potential applications in fungicidal disease control in agriculture.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 653003, Henan, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Raja Asad Ali Khan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ning Luo
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Zixin Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zeyu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gerald F Bills
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Gupta R. Saponins as double-edged swords in plant-fungal interactions. TRENDS IN PLANT SCIENCE 2025; 30:4-6. [PMID: 39245594 DOI: 10.1016/j.tplants.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Botrytis cinerea is a destructive pathogen. A recent study by Escaray et al. revealed the unexpected role of triterpenoid saponins as a susceptibility factor in Euphorbia lathyris, which promotes B. cinerea infection. This provides the possibility of developing a broad-spectrum plant protection solution by targeting the inhibition of the saponin biosynthetic pathway.
Collapse
Affiliation(s)
- Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| |
Collapse
|
7
|
Song Y, Wang Y, Zhang H, Saddique MAB, Luo X, Ren M. The TOR signalling pathway in fungal phytopathogens: A target for plant disease control. MOLECULAR PLANT PATHOLOGY 2024; 25:e70024. [PMID: 39508186 PMCID: PMC11541241 DOI: 10.1111/mpp.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
Plant diseases caused by fungal phytopathogens have led to significant economic losses in agriculture worldwide. The management of fungal diseases is mainly dependent on the application of fungicides, which are not suitable for sustainable agriculture, human health, and environmental safety. Thus, it is necessary to develop novel targets and green strategies to mitigate the losses caused by these pathogens. The target of rapamycin (TOR) complexes and key components of the TOR signalling pathway are evolutionally conserved in pathogens and closely related to the vegetative growth and pathogenicity. As indicated in recent systems, chemical, genetic, and genomic studies on the TOR signalling pathway, phytopathogens with TOR dysfunctions show severe growth defects and nonpathogenicity, which makes the TOR signalling pathway to be developed into an ideal candidate target for controlling plant disease. In this review, we comprehensively discuss the current knowledge on components of the TOR signalling pathway in microorganisms and the diverse roles of various plant TOR in response to plant pathogens. Furthermore, we analyse a range of disease management strategies that rely on the TOR signalling pathway, including genetic modification technologies and chemical controls. In the future, disease control strategies based on the TOR signalling network are expected to become a highly effective weapon for crop protection.
Collapse
Affiliation(s)
- Yun Song
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Yaru Wang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Huafang Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Muhammad Abu Bakar Saddique
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| |
Collapse
|
8
|
Wei J, Zhou Q, Zhang J, Wu M, Li G, Yang L. Dual RNA-seq reveals distinct families of co-regulated and structurally conserved effectors in Botrytis cinerea infection of Arabidopsis thaliana. BMC Biol 2024; 22:239. [PMID: 39428503 PMCID: PMC11492575 DOI: 10.1186/s12915-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Botrytis cinerea is a broad-host-range pathogen causing gray mold disease and significant yield losses of numerous crops. However, the mechanisms underlying its rapid invasion and efficient killing of plant cells remain unclear. RESULTS In this study, we elucidated the dynamics of B. cinerea infection in Arabidopsis thaliana by live cell imaging and dual RNA sequencing. We found extensive transcriptional reprogramming events in both the pathogen and the host, which involved metabolic pathways, signaling cascades, and transcriptional regulation. For the pathogen, we identified 591 candidate effector proteins (CEPs) and comprehensively analyzed their co-expression, sequence similarity, and structural conservation. The results revealed temporal co-regulation patterns of these CEPs, indicating coordinated deployment of effectors during B. cinerea infection. Through functional screening of 48 selected CEPs in Nicotiana benthamiana, we identified 11 cell death-inducing proteins (CDIPs) in B. cinerea. CONCLUSIONS The findings provide important insights into the transcriptional dynamics and effector biology driving B. cinerea pathogenesis. The rapid infection of this pathogen involves the temporal co-regulation of CEPs and the prominent role of CDIPs in host cell death. This work highlights significant changes in gene expression associated with gray mold disease, underscoring the importance of a diverse repertoire of effectors crucial for successful infection.
Collapse
Affiliation(s)
- Jinfeng Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
9
|
Yu Y, Li X, Hou Y, Wei M, Qian Y, Zhou Y, Yin M, Jiang Y, Song P. The effect of Ca 2+-calcineurin signaling pathway on the antifungal activity of Pd-D-V against Botrytis cinerea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106007. [PMID: 39084802 DOI: 10.1016/j.pestbp.2024.106007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024]
Abstract
Gray mold, caused by Botrytis cinerea is an intractable fungal disease that causes extensive damage to agricultural products. In the search for novel antifungal active ingredients, we discovered a linear pyranocoumarin Pd-D-V was effective against B. cinerea in both in vitro and in vivo assays. Furthermore, this study investigated the effects of Ca2+ and the Ca2+-calcineurin signaling pathway on its antifungal activity against B. cinerea. The results indicated that Pd-D-V reduced the concentration of Ca2+ in the mycelia of B. cinerea; CaCl2, the Ca2+ channel blocker verapamil, or the calcineurin inhibitor cyclosporin A could affect the sensitivity of Pd-D-V against B. cinerea; the expression of genes (Bccch1, Bcmid1, BccnA, Bccnb1, Bcpmc1, and Bcpmr1) of the Ca2+-calcineurin signaling pathway decreased after Pd-D-V treatment. In summary, Pd-D-V is compound for developing fungicides against B. cinerea. Pd-D-V can reduce intracellular Ca2+ concentration and disturb Ca2+ homeostasis. The Ca2+-calcineurin signaling pathway is important in the antifungal activity of Pd-D-V against B. cinerea.
Collapse
Affiliation(s)
- Yao Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xinru Li
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Wei
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yiyun Qian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuxin Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Min Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yanqin Jiang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Pingping Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Ren W, Qian C, Ren D, Cai Y, Deng Z, Zhang N, Wang C, Wang Y, Zhu P, Xu L. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Botrytis cinerea. mBio 2024; 15:e0013324. [PMID: 38814088 PMCID: PMC11253612 DOI: 10.1128/mbio.00133-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Botrytis cinerea is a typical necrotrophic plant pathogenic fungus which can deliberately acidify host tissues and trigger oxidative bursts therein to facilitate its virulence. The white collar complex (WCC), consisting of BcWCL1 and BcWCL2, is recognized as the primary light receptor in B. cinerea. Nevertheless, the specific mechanisms through which the WCC components, particularly BcWCL2 as a GATA transcription factor, control virulence are not yet fully understood. This study demonstrates that deletion of BcWCL2 results in the loss of light-sensitive phenotypic characteristics. Additionally, the Δbcwcl2 strain exhibits reduced secretion of citrate, delayed infection cushion development, weaker hyphal penetration, and decreased virulence. The application of exogenous citric acid was found to restore infection cushion formation, hyphal penetration, and virulence of the Δbcwcl2 strain. Transcriptome analysis at 48 h post-inoculation revealed that two citrate synthases, putative citrate transporters, hydrolytic enzymes, and reactive oxygen species scavenging-related genes were down-regulated in Δbcwcl2, whereas exogenous citric acid application restored the expression of the above genes involved in the early infection process of Δbcwcl2. Moreover, the expression of Bcvel1, a known regulator of citrate secretion, tissue acidification, and secondary metabolism, was down-regulated in Δbcwcl2 but not in Δbcwcl1. ChIP-qPCR and electrophoretic mobility shift assays revealed that BcWCL2 can bind to the promoter sequences of Bcvel1. Overexpressing Bcvel1 in Δbcwcl2 was found to rescue the mutant defects. Collectively, our findings indicate that BcWCL2 regulates the expression of the global regulator Bcvel1 to influence citrate secretion, tissue acidification, redox homeostasis, and virulence of B. cinerea.IMPORTANCEThis study illustrated the significance of the fungal blue light receptor component BcWCL2 protein in regulating citrate secretion in Botrytis cinerea. Unlike BcWCL1, BcWCL2 may contribute to redox homeostasis maintenance during infection cushion formation, ultimately proving to be essential for full virulence. It is also demonstrated that BcWCL2 can regulate the expression of Bcvel1 to influence host tissue acidification, citrate secretion, infection cushion development, and virulence. While the role of organic acids secreted by plant pathogenic fungi in fungus-host interactions has been recognized, this paper revealed the importance, regulatory mechanisms, and key transcription factors that control organic acid secretion. These understanding of the pathogenetic mechanism of plant pathogens can provide valuable insights for developing effective prevention and treatment strategies against fungal diseases.
Collapse
Affiliation(s)
- Weiheng Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Chen Qian
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Dandan Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yunfei Cai
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhaohui Deng
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ning Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Congcong Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
11
|
Huang X, Liu Y, Jia Y, Ji L, Luo X, Tian S, Chen T. FERONIA homologs in stress responses of horticultural plants: current knowledge and missing links. STRESS BIOLOGY 2024; 4:28. [PMID: 38847988 PMCID: PMC11161445 DOI: 10.1007/s44154-024-00161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 06/10/2024]
Abstract
Owing to its versatile roles in almost all aspects of plants, FERONIA (FER), a receptor-like kinase of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) subfamily, has received extensive research interests during the past decades. Accumulating evidence has been emerged that FER homologs in horticultural crops also play crucial roles in reproductive biology and responses to environmental stimuli (abiotic and biotic stress factors). Here, we provide a review for the latest advances in the studies on FER homologs in modulating stress responses in horticultural crops, and further analyze the underlying mechanisms maintained by FER. Moreover, we also envisage the missing links in current work and provide a perspective for future studies on this star protein.
Collapse
Affiliation(s)
- Xinhua Huang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhong Jia
- Vegetable Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Lizhu Ji
- Vegetable Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Xiaomin Luo
- China National Botanical Garden, Beijing, 100093, China.
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
12
|
Zhang X, Zhang Z, Chen T, Chen Y, Li B, Tian S. Characterization of two SGNH family cell death-inducing proteins from the horticulturally important fungal pathogen Botrytis cinerea based on the optimized prokaryotic expression system. MOLECULAR HORTICULTURE 2024; 4:9. [PMID: 38449027 PMCID: PMC10919021 DOI: 10.1186/s43897-024-00086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Botrytis cinerea is one of the most destructive phytopathogenic fungi, causing significant losses to horticultural crops. As a necrotrophic fungus, B. cinerea obtains nutrients by killing host cells. Secreted cell death-inducing proteins (CDIPs) play a crucial role in necrotrophic infection; however, only a limited number have been reported. For high-throughput CDIP screening, we optimized the prokaryotic expression system and compared its efficiency with other commonly used protein expression systems. The optimized prokaryotic expression system showed superior effectiveness and efficiency and was selected for subsequent CDIP screening. The screening system verified fifty-five candidate proteins and identified two novel SGNH family CDIPs: BcRAE and BcFAT. BcRAE and BcFAT exhibited high expression levels throughout the infection process. Site-directed mutagenesis targeting conserved Ser residues abolished the cell death-inducing activity of both BcRAE and BcFAT. Moreover, the transient expression of BcRAE and BcFAT in plants enhanced plant resistance against B. cinerea without inducing cell death, independent of their enzymatic activities. Our results suggest a high-efficiency screening system for high-throughput CDIP screening and provide new targets for further study of B. cinerea-plant interactions.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Chen D, Zhang Z, Chen Y, Li B, Chen T, Tian S. Transcriptional landscape of pathogen-responsive lncRNAs in tomato unveils the role of hydrolase encoding genes in response to Botrytis cinerea invasion. PLANT, CELL & ENVIRONMENT 2024; 47:651-663. [PMID: 37899711 DOI: 10.1111/pce.14757] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/30/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023]
Abstract
LncRNAs have gained increasing attention owing to their important regulatory roles on growth and stress responses of plants. However, the mechanisms underlying the functions of lncRNAs in fruit-pathogen interaction are still largely unknown. In this study, a total of 273 lncRNAs responding to Botrytis cinerea infection were identified in tomato fruit, among which a higher percentage of antisense lncRNAs were targeted to the genes enriched in hydrolase activity. To ascertain the roles of these lncRNAs, seven hydrolase-related transcripts were transiently knocked-down by virus-induced gene silencing. Silencing of lncRNACXE20 reduced the expression level of a carboxylesterase gene, further enhancing the resistance of tomato to B. cinerea. In contrast, silencing of lncRNACHI, lncRNAMMP, lncRNASBT1.9 and lncRNAPME1.9 impaired the resistance to B. cinerea, respectively. Further RT-qPCR assay and enzymatic activity detection displayed that the attenuated resistance of lncRNAMMP and lncRNASBT1.9-silenced plants was associated with the inhibition on the expression of JA-related genes, while the decreased resistance of lncRNACHI-silenced plants resulted in reduced chitinase activity. Collectively, these results may provide references for deciphering the mechanisms underlying specific lncRNAs to interfere with B. cinerea infection by regulating the expression of defence-related genes or affecting hydrolase activity.
Collapse
Affiliation(s)
- Daoguo Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhanquan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Boqiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Singh R, Caseys C, Kliebenstein DJ. Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2024; 25:e13404. [PMID: 38037862 PMCID: PMC10788480 DOI: 10.1111/mpp.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Botrytis cinerea Pers. Fr. (teleomorph: Botryotinia fuckeliana) is a necrotrophic fungal pathogen that attacks a wide range of plants. This updated pathogen profile explores the extensive genetic diversity of B. cinerea, highlights the progress in genome sequencing, and provides current knowledge of genetic and molecular mechanisms employed by the fungus to attack its hosts. In addition, we also discuss recent innovative strategies to combat B. cinerea. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botrytis, species: cinerea. HOST RANGE B. cinerea infects almost all of the plant groups (angiosperms, gymnosperms, pteridophytes, and bryophytes). To date, 1606 plant species have been identified as hosts of B. cinerea. GENETIC DIVERSITY This polyphagous necrotroph has extensive genetic diversity at all population levels shaped by climate, geography, and plant host variation. PATHOGENICITY Genetic architecture of virulence and host specificity is polygenic using multiple weapons to target hosts, including secretory proteins, complex signal transduction pathways, metabolites, and mobile small RNA. DISEASE CONTROL STRATEGIES Efforts to control B. cinerea, being a high-diversity generalist pathogen, are complicated. However, integrated disease management strategies that combine cultural practices, chemical and biological controls, and the use of appropriate crop varieties will lessen yield losses. Recently, studies conducted worldwide have explored the potential of small RNA as an efficient and environmentally friendly approach for combating grey mould. However, additional research is necessary, especially on risk assessment and regulatory frameworks, to fully harness the potential of this technology.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | - Celine Caseys
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | | |
Collapse
|