1
|
Rados T, Leland OS, Escudeiro P, Mallon J, Andre K, Caspy I, von Kügelgen A, Stolovicki E, Nguyen S, Patop IL, Rangel LT, Kadener S, Renner LD, Thiel V, Soen Y, Bharat TAM, Alva V, Bisson A. Tissue-like multicellular development triggered by mechanical compression in archaea. Science 2025; 388:109-115. [PMID: 40179183 DOI: 10.1126/science.adu0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/05/2025] [Indexed: 04/05/2025]
Abstract
The advent of clonal multicellularity is a critical evolutionary milestone, seen often in eukaryotes, rarely in bacteria, and only once in archaea. We show that uniaxial compression induces clonal multicellularity in haloarchaea, forming tissue-like structures. These archaeal tissues are mechanically and molecularly distinct from their unicellular lifestyle, mimicking several eukaryotic features. Archaeal tissues undergo a multinucleate stage followed by tubulin-independent cellularization, orchestrated by active membrane tension at a critical cell size. After cellularization, tissue junction elasticity becomes akin to that of animal tissues, giving rise to two cell types-peripheral (Per) and central scutoid (Scu) cells-with distinct actin and protein glycosylation polarity patterns. Our findings highlight the potential convergent evolution of a biophysical mechanism in the emergence of multicellular systems across domains of life.
Collapse
Affiliation(s)
- Theopi Rados
- Brandeis University, Department of Biology, Waltham, MA, USA
| | - Olivia S Leland
- Brandeis University, Department of Biology, Waltham, MA, USA
| | - Pedro Escudeiro
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - John Mallon
- Brandeis University, Department of Biology, Waltham, MA, USA
| | - Katherine Andre
- Brandeis University, Department of Biology, Waltham, MA, USA
| | - Ido Caspy
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Elad Stolovicki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sinead Nguyen
- Brandeis University, Department of Biology, Waltham, MA, USA
| | | | - L Thiberio Rangel
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Vera Thiel
- Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Yoav Soen
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Alex Bisson
- Brandeis University, Department of Biology, Waltham, MA, USA
| |
Collapse
|
2
|
Olivetta M, Bhickta C, Chiaruttini N, Burns J, Dudin O. A multicellular developmental program in a close animal relative. Nature 2024; 635:382-389. [PMID: 39506108 DOI: 10.1038/s41586-024-08115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024]
Abstract
All animals develop from a single-celled zygote into a complex multicellular organism through a series of precisely orchestrated processes1,2. Despite the remarkable conservation of early embryogenesis across animals, the evolutionary origins of how and when this process first emerged remain elusive. Here, by combining time-resolved imaging and transcriptomic profiling, we show that single cells of the ichthyosporean Chromosphaera perkinsii-a close relative that diverged from animals about 1 billion years ago3,4-undergo symmetry breaking and develop through cleavage divisions to produce a prolonged multicellular colony with distinct co-existing cell types. Our findings about the autonomous and palintomic developmental program of C. perkinsii hint that such multicellular development either is much older than previously thought or evolved convergently in ichthyosporeans.
Collapse
Affiliation(s)
- Marine Olivetta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Chandni Bhickta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Nicolas Chiaruttini
- Bioimaging and Optics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - John Burns
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA.
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Kahlon U, Ricca FD, Pillai SJ, Olivetta M, Tharp KM, Jao LE, Dudin O, McDonald K, Aydogan MG. A mitochondrial redox switch licenses the onset of morphogenesis in animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620733. [PMID: 39553983 PMCID: PMC11565760 DOI: 10.1101/2024.10.28.620733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Embryos undergo pre-gastrulation cleavage cycles to generate a critical cell mass before transitioning to morphogenesis. The molecular underpinnings of this transition have traditionally centered on zygotic chromatin remodeling and genome activation1,2, as their repression can prevent downstream processes of differentiation and organogenesis. Despite precedents that oxygen depletion can similarly suspend development in early embryos3-6, hinting at a pivotal role for oxygen metabolism in this transition, whether there is a bona fide chemical switch that licenses the onset of morphogenesis remains unknown. Here we discover that a mitochondrial oxidant acts as a metabolic switch to license the onset of animal morphogenesis. Concomitant with the instatement of mitochondrial membrane potential, we found a burst-like accumulation of mitochondrial superoxide (O2 -) during fly blastoderm formation. In vivo chemistry experiments revealed that an electron leak from site IIIQo at ETC Complex III is responsible for O2 - production. Importantly, depleting mitochondrial O2 - fully mimics anoxic conditions and, like anoxia, induces suspended animation prior to morphogenesis, but not after. Specifically, H2O2, and not ONOO-, NO, or HO•, can single-handedly account for this mtROS-based response. We demonstrate that depleting mitochondrial O2 - similarly prevents the onset of morphogenetic events in vertebrate embryos and ichthyosporea, close relatives of animals. We postulate that such redox-based metabolic licensing of morphogenesis is an ancient trait of holozoans that couples the availability of oxygen to development, conserved from early-diverging animal relatives to vertebrates.
Collapse
Affiliation(s)
- Updip Kahlon
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- Touro College of Osteopathic Medicine, Touro University, USA
- These authors have contributed equally
| | - Francesco Dalla Ricca
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- Dev. & Stem Cell Biology Graduate Program, University of California, San Francisco, USA
- These authors have contributed equally
| | - Saraswathi J. Pillai
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- These authors have contributed equally
| | - Marine Olivetta
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Kevin M. Tharp
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, USA
| | - Omaya Dudin
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Kent McDonald
- Electron Microscope Lab, University of California, Berkeley, USA
| | - Mustafa G. Aydogan
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- Nutrition and Obesity Research Center, University of California, San Francisco, USA
| |
Collapse
|
4
|
Shabardina V, Dharamshi JE, Ara PS, Antó M, Bascón FJ, Suga H, Marshall W, Scazzocchio C, Casacuberta E, Ruiz-Trillo I. Ichthyosporea: a window into the origin of animals. Commun Biol 2024; 7:915. [PMID: 39075159 PMCID: PMC11286789 DOI: 10.1038/s42003-024-06608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
Ichthyosporea is an underexplored group of unicellular eukaryotes closely related to animals. Thanks to their phylogenetic position, genomic content, and development through a multinucleate coenocyte reminiscent of some animal embryos, the members of Ichthyosporea are being increasingly recognized as pivotal to the study of animal origins. We delve into the existing knowledge of Ichthyosporea, identify existing gaps and discuss their life cycles, genomic insights, development, and potential to be model organisms. We also discuss the underestimated diversity of ichthyosporeans, based on new environmental data analyses. This review will be an essential resource for researchers venturing into the study of ichthyosporeans.
Collapse
Affiliation(s)
- Victoria Shabardina
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| | - Jennah E Dharamshi
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Patricia S Ara
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Meritxell Antó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Fernando J Bascón
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Wyth Marshall
- Bluefrontier Biological Services, Campbell River, BC, Canada
| | - Claudio Scazzocchio
- Department of Life Sciences, Imperial College London, London, UK
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Elena Casacuberta
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
5
|
Shah H, Olivetta M, Bhickta C, Ronchi P, Trupinić M, Tromer EC, Tolić IM, Schwab Y, Dudin O, Dey G. Life-cycle-coupled evolution of mitosis in close relatives of animals. Nature 2024; 630:116-122. [PMID: 38778110 PMCID: PMC11153136 DOI: 10.1038/s41586-024-07430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Eukaryotes have evolved towards one of two extremes along a spectrum of strategies for remodelling the nuclear envelope during cell division: disassembling the nuclear envelope in an open mitosis or constructing an intranuclear spindle in a closed mitosis1,2. Both classes of mitotic remodelling involve key differences in the core division machinery but the evolutionary reasons for adopting a specific mechanism are unclear. Here we use an integrated comparative genomics and ultrastructural imaging approach to investigate mitotic strategies in Ichthyosporea, close relatives of animals and fungi. We show that species in this clade have diverged towards either a fungal-like closed mitosis or an animal-like open mitosis, probably to support distinct multinucleated or uninucleated states. Our results indicate that multinucleated life cycles favour the evolution of closed mitosis.
Collapse
Affiliation(s)
- Hiral Shah
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Marine Olivetta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Chandni Bhickta
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Monika Trupinić
- Division of Molecular Biology, Ruđer Bošković Institute (RBI), Zagreb, Croatia
| | - Eelco C Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute (RBI), Zagreb, Croatia
| | - Yannick Schwab
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
6
|
Phillips JE, Pan D. The Hippo kinase cascade regulates a contractile cell behavior and cell density in a close unicellular relative of animals. eLife 2024; 12:RP90818. [PMID: 38517944 PMCID: PMC10959527 DOI: 10.7554/elife.90818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
The genomes of close unicellular relatives of animals encode orthologs of many genes that regulate animal development. However, little is known about the function of such genes in unicellular organisms or the evolutionary process by which these genes came to function in multicellular development. The Hippo pathway, which regulates cell proliferation and tissue size in animals, is present in some of the closest unicellular relatives of animals, including the amoeboid organism Capsaspora owczarzaki. We previously showed that the Capsaspora ortholog of the Hippo pathway nuclear effector Yorkie/YAP/TAZ (coYki) regulates actin dynamics and the three-dimensional morphology of Capsaspora cell aggregates, but is dispensable for cell proliferation control (Phillips et al., 2022). However, the function of upstream Hippo pathway components, and whether and how they regulate coYki in Capsaspora, remained unknown. Here, we analyze the function of the upstream Hippo pathway kinases coHpo and coWts in Capsaspora by generating mutant lines for each gene. Loss of either kinase results in increased nuclear localization of coYki, indicating an ancient, premetazoan origin of this Hippo pathway regulatory mechanism. Strikingly, we find that loss of either kinase causes a contractile cell behavior and increased density of cell packing within Capsaspora aggregates. We further show that this increased cell density is not due to differences in proliferation, but rather actomyosin-dependent changes in the multicellular architecture of aggregates. Given its well-established role in cell density-regulated proliferation in animals, the increased density of cell packing in coHpo and coWts mutants suggests a shared and possibly ancient and conserved function of the Hippo pathway in cell density control. Together, these results implicate cytoskeletal regulation but not proliferation as an ancestral function of the Hippo pathway kinase cascade and uncover a novel role for Hippo signaling in regulating cell density in a proliferation-independent manner.
Collapse
Affiliation(s)
- Jonathan E Phillips
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
7
|
Schindler-Johnson M, Petridou NI. Collective effects of cell cleavage dynamics. Front Cell Dev Biol 2024; 12:1358971. [PMID: 38559810 PMCID: PMC10978805 DOI: 10.3389/fcell.2024.1358971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
A conserved process of early embryonic development in metazoans is the reductive cell divisions following oocyte fertilization, termed cell cleavages. Cell cleavage cycles usually start synchronously, lengthen differentially between the embryonic cells becoming asynchronous, and cease before major morphogenetic events, such as germ layer formation and gastrulation. Despite exhibiting species-specific characteristics, the regulation of cell cleavage dynamics comes down to common controllers acting mostly at the single cell/nucleus level, such as nucleus-to-cytoplasmic ratio and zygotic genome activation. Remarkably, recent work has linked cell cleavage dynamics to the emergence of collective behavior during embryogenesis, including pattern formation and changes in embryo-scale mechanics, raising the question how single-cell controllers coordinate embryo-scale processes. In this review, we summarize studies across species where an association between cell cleavages and collective behavior was made, discuss the underlying mechanisms, and propose that cell-to-cell variability in cell cleavage dynamics can serve as a mechanism of long-range coordination in developing embryos.
Collapse
Affiliation(s)
- Magdalena Schindler-Johnson
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicoletta I. Petridou
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
8
|
Phillips JE, Pan D. The Hippo kinase cascade regulates a contractile cell behavior and cell density in a close unicellular relative of animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.25.550562. [PMID: 37546755 PMCID: PMC10402117 DOI: 10.1101/2023.07.25.550562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The genomes of close unicellular relatives of animals encode orthologs of many genes that regulate animal development. However, little is known about the function of such genes in unicellular organisms or the evolutionary process by which these genes came to function in multicellular development. The Hippo pathway, which regulates cell proliferation and tissue size in animals, is present in some of the closest unicellular relatives of animals, including the amoeboid organism Capsaspora owczarzaki. We previously showed that the Capsaspora ortholog of the Hippo pathway nuclear effector Yorkie/YAP/TAZ (coYki) regulates actin dynamics and the three-dimensional morphology of Capsaspora cell aggregates, but is dispensable for cell proliferation control (Phillips et al., 2022). However, the function of upstream Hippo pathway components, and whether and how they regulate coYki in Capsaspora, remained unknown. Here, we analyze the function of the upstream Hippo pathway kinases coHpo and coWts in Capsaspora by generating mutant lines for each gene. Loss of either kinase results in increased nuclear localization of coYki, indicating an ancient, premetazoan origin of this Hippo pathway regulatory mechanism. Strikingly, we find that loss of either kinase causes a contractile cell behavior and increased density of cell packing within Capsaspora aggregates. We further show that this increased cell density is not due to differences in proliferation, but rather actomyosin-dependent changes in the multicellular architecture of aggregates. Given its well-established role in cell density-regulated proliferation in animals, the increased density of cell packing in coHpo and coWts mutants suggests a shared and possibly ancient and conserved function of the Hippo pathway in cell density control. Together, these results implicate cytoskeletal regulation but not proliferation as an ancestral function of the Hippo pathway kinase cascade and uncover a novel role for Hippo signaling in regulating cell density in a proliferation-independent manner.
Collapse
Affiliation(s)
- Jonathan E Phillips
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
9
|
Hara Y. Physical forces modulate interphase nuclear size. Curr Opin Cell Biol 2023; 85:102253. [PMID: 37801797 DOI: 10.1016/j.ceb.2023.102253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023]
Abstract
The eukaryotic nucleus exhibits remarkable plasticity in size, adjusting dynamically to changes in cellular conditions such as during development and differentiation, and across species. Traditionally, the supply of structural constituents to the nuclear envelope has been proposed as the principal determinant of nuclear size. However, recent experimental and theoretical analyses have provided an alternative perspective, which emphasizes the crucial role of physical forces such as osmotic pressure and chromatin repulsion forces in regulating nuclear size. These forces can be modulated by the molecular profiles that traverse the nuclear envelope and assemble in the macromolecular complex. This leads to a new paradigm wherein multiple nuclear macromolecules that are not limited to only the structural constituents of the nuclear envelope, are involved in the control of nuclear size and related functions.
Collapse
Affiliation(s)
- Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi City, 753-8512, Japan.
| |
Collapse
|
10
|
Zhou CY, Heald R. Principles of genome activation in the early embryo. Curr Opin Genet Dev 2023; 81:102062. [PMID: 37339553 PMCID: PMC11419330 DOI: 10.1016/j.gde.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
A major hurdle in an embryo's life is the initiation of its own transcriptional program, a process termed Zygotic Genome Activation (ZGA). In many species, ZGA is intricately timed, with bulk transcription initiating at the end of a series of reductive cell divisions when cell cycle duration increases. At the same time, major changes in genome architecture give rise to chromatin states that are permissive to RNA polymerase II activity. Yet, we still do not understand the series of events that trigger gene expression at the right time and in the correct sequence. Here we discuss new discoveries that deepen our understanding of how zygotic genes are primed for transcription, and how these events are regulated by the cell cycle and nuclear import. Finally, we speculate on the evolutionary basis of ZGA timing as an exciting future direction for the field.
Collapse
Affiliation(s)
- Coral Y Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
11
|
Colgren J, Burkhardt P. Evolution: Was the nuclear-to-cytoplasmic ratio a key factor in the origin of animal multicellularity? Curr Biol 2023; 33:R298-R300. [PMID: 37098330 DOI: 10.1016/j.cub.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The ichthyosporean Sphaeroforma arctica, a protist closely related to animals, displays coenocytic development followed by cellularization and cell release. A new study reveals that the nuclear-to-cytoplasmic ratio drives cellularization in these fascinating organisms.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway.
| | - Pawel Burkhardt
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway.
| |
Collapse
|