1
|
Salamanca-Díaz DA, Horkan HR, García-Castro H, Emili E, Salinas-Saavedra M, Pérez-Posada A, Rossi ME, Álvarez-Presas M, Mac Gabhann R, Hillenbrand P, Febrimarsa, Curantz C, Weavers PK, Lund-Ricard Y, Förg T, Michaca MH, Sanders SM, Kenny NJ, Paps J, Frank U, Solana J. The Hydractinia cell atlas reveals cellular and molecular principles of cnidarian coloniality. Nat Commun 2025; 16:2121. [PMID: 40032860 PMCID: PMC11876637 DOI: 10.1038/s41467-025-57168-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Coloniality is a widespread growth form in cnidarians, tunicates, and bryozoans, among others. Colonies function as single physiological units despite their modular structure of zooids and supporting tissues. A key question is how structurally and functionally distinct colony parts are generated. In the cnidarian Hydractinia symbiolongicarpus, colonies consist of zooids (polyps) interconnected by stolons attached to the substrate. Using single-cell transcriptomics, we profiled ~200,000 Hydractinia cells, including stolons and two polyp types, identifying major cell types and their distribution across colony parts. Distinct colony parts are primarily characterised by unique combinations of shared cell types and to a lesser extent by part-specific cell types. We identified cell type-specific transcription factors (TFs) and gene sets expressed within these cell types. This suggests that cell type combinations and occasional innovations drive the evolution of coloniality in cnidarians. We uncover a novel stolon-specific cell type linked to biomineralization and chitin synthesis, potentially crucial for habitat adaptation. Additionally, we describe a new cell type mediating self/non-self recognition. In summary, the Hydractinia cell atlas provides insights into the cellular and molecular mechanisms underpinning coloniality.
Collapse
Affiliation(s)
- David A Salamanca-Díaz
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Helen R Horkan
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| | - Helena García-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Elena Emili
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Miguel Salinas-Saavedra
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Alberto Pérez-Posada
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Maria Eleonora Rossi
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Marta Álvarez-Presas
- School of Biological Sciences, University of Bristol, Bristol, UK
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, Barcelona, Spain
| | - Rowan Mac Gabhann
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Paula Hillenbrand
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Febrimarsa
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jawa Tengah, Indonesia
| | - Camille Curantz
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - Paris K Weavers
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Yasmine Lund-Ricard
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Tassilo Förg
- Institute of Zoology, University of Heidelberg, Heidelberg, Germany
| | - Manuel H Michaca
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pennsylvania, PA, USA
| | - Steven M Sanders
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pennsylvania, PA, USA
| | - Nathan J Kenny
- Department of Biochemistry, University of Otago, Aotearoa, Dunedin, New Zealand
| | - Jordi Paps
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Uri Frank
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
- Living Systems Institute, University of Exeter, Exeter, UK.
- Department of Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Surm JM, Landau M, Columbus-Shenkar YY, Moran Y. Sea Anemone Membrane Attack Complex/Perforin Superfamily Demonstrates an Evolutionary Transitional State between Venomous and Developmental Functions. Mol Biol Evol 2024; 41:msae082. [PMID: 38676945 PMCID: PMC11090067 DOI: 10.1093/molbev/msae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
Gene duplication is a major force driving evolutionary innovation. A classic example is generating new animal toxins via duplication of physiological protein-encoding genes and recruitment into venom. While this process drives the innovation of many animal venoms, reverse recruitment of toxins into nonvenomous cells remains unresolved. Using comparative genomics, we find members of the Membrane Attack Complex and Perforin Family (MAC) have been recruited into venom-injecting cells (cnidocytes), in soft and stony corals and sea anemones, suggesting that the ancestral MAC was a cnidocyte expressed toxin. Further investigation into the model sea anemone Nematostella vectensis reveals that three members have undergone Nematostella-specific duplications leading to their reverse recruitment into endomesodermal cells. Furthermore, simultaneous knockdown of all three endomesodermally expressed MACs leads to mis-development, supporting that these paralogs have nonvenomous function. By resolving the evolutionary history and function of MACs in Nematostella, we provide the first proof for reverse recruitment from venom to organismal development.
Collapse
Affiliation(s)
- Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Morani Landau
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Yaara Y Columbus-Shenkar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| |
Collapse
|
3
|
Cole AG, Steger J, Hagauer J, Denner A, Ferrer Murguia P, Knabl P, Narayanaswamy S, Wick B, Montenegro JD, Technau U. Updated single cell reference atlas for the starlet anemone Nematostella vectensis. Front Zool 2024; 21:8. [PMID: 38500146 PMCID: PMC10946136 DOI: 10.1186/s12983-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The recent combination of genomics and single cell transcriptomics has allowed to assess a variety of non-conventional model organisms in much more depth. Single cell transcriptomes can uncover hidden cellular complexity and cell lineage relationships within organisms. The recent developmental cell atlases of the sea anemone Nematostella vectensis, a representative of the basally branching Cnidaria, has provided new insights into the development of all cell types (Steger et al Cell Rep 40(12):111370, 2022; Sebé-Pedrós et al. Cell 173(6):1520-1534.e20). However, the mapping of the single cell reads still suffers from relatively poor gene annotations and a draft genome consisting of many scaffolds. RESULTS Here we present a new wildtype resource of the developmental single cell atlas, by re-mapping of sequence data first published in Steger et al. (2022) and Cole et al. (Nat Commun 14(1):1747, 2023), to the new chromosome-level genome assembly and corresponding gene models in Zimmermann et al. (Nat Commun 14, 8270 (2023). https://doi.org/10.1038/s41467-023-44080-7 ). We expand the pre-existing dataset through the incorporation of additional sequence data derived from the capture and sequencing of cell suspensions from four additional samples: 24 h gastrula, 2d planula, an inter-parietal region of the bodywall from a young unsexed animal, and another adult mesentery from a mature male animal. CONCLUSION Our analyses of the full cell-state inventory provide transcriptomic signatures for 127 distinct cell states, of which 47 correspond to neuroglandular subtypes. We also identify two distinct putatively immune-related transcriptomic profiles that segregate between the inner and outer cell layers. Furthermore, the new gene annotation Nv2 has markedly improved the mapping on the single cell transcriptome data and will therefore be of great value for the community and anyone using the dataset.
Collapse
Affiliation(s)
- Alison G Cole
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Research Platform Single Cell Regulation of Stem Cells, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Julia Steger
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Julia Hagauer
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Andreas Denner
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Patricio Ferrer Murguia
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Paul Knabl
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Sanjay Narayanaswamy
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Brittney Wick
- UCSC Cellbrowser, University of California, Santa Cruz, USA
| | - Juan D Montenegro
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Research Platform Single Cell Regulation of Stem Cells, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Max Perutz Labs, University of Vienna, Dr. Bohrgasse 9, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Knabl P, Schauer A, Pomreinke AP, Zimmermann B, Rogers KW, Čapek D, Müller P, Genikhovich G. Analysis of SMAD1/5 target genes in a sea anemone reveals ZSWIM4-6 as a novel BMP signaling modulator. eLife 2024; 13:e80803. [PMID: 38323609 PMCID: PMC10849676 DOI: 10.7554/elife.80803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/28/2024] [Indexed: 02/08/2024] Open
Abstract
BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling. To address this, we generated a genome-wide list of direct pSMAD1/5 target genes in the anthozoan Nematostella vectensis, several of which were conserved in Drosophila and Xenopus. Our ChIP-seq analysis revealed that many of the regulatory molecules with documented bilaterally symmetric expression in Nematostella are directly controlled by BMP signaling. We identified several so far uncharacterized BMP-dependent transcription factors and signaling molecules, whose bilaterally symmetric expression may be indicative of their involvement in secondary axis patterning. One of these molecules is zswim4-6, which encodes a novel nuclear protein that can modulate the pSMAD1/5 gradient and potentially promote BMP-dependent gene repression.
Collapse
Affiliation(s)
- Paul Knabl
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of ViennaViennaAustria
| | - Alexandra Schauer
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
- University of KonstanzKonstanzGermany
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| |
Collapse
|
5
|
Brunet T. Cell contractility in early animal evolution. Curr Biol 2023; 33:R966-R985. [PMID: 37751712 DOI: 10.1016/j.cub.2023.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Tissue deformation mediated by collective cell contractility is a signature characteristic of animals. In most animals, fast and reversible contractions of muscle cells mediate behavior, while slow and irreversible contractions of epithelial or mesenchymal cells play a key role in morphogenesis. Animal tissue contractility relies on the activity of the actin/myosin II complex (together referred to as 'actomyosin'), an ancient and versatile molecular machinery that performs a broad range of functions in development and physiology. This review synthesizes emerging insights from morphological and molecular studies into the evolutionary history of animal contractile tissue. The most ancient functions of actomyosin are cell crawling and cytokinesis, which are found in a wide variety of unicellular eukaryotes and in individual metazoan cells. Another contractile functional module, apical constriction, is universal in metazoans and shared with choanoflagellates, their closest known living relatives. The evolution of animal contractile tissue involved two key innovations: firstly, the ability to coordinate and integrate actomyosin assembly across multiple cells, notably to generate supracellular cables, which ensure tissue integrity but also allow coordinated morphogenesis and movements at the organism scale; and secondly, the evolution of dedicated contractile cell types for adult movement, belonging to two broad categories respectively defined by the expression of the fast (striated-type) and slow (smooth/non-muscle-type) myosin II paralogs. Both contractile cell types ancestrally resembled generic contractile epithelial or mesenchymal cells and might have played a versatile role in both behavior and morphogenesis. Modern animal contractile cells span a continuum between unspecialized contractile epithelia (which underlie behavior in modern placozoans), epithelia with supracellular actomyosin cables (found in modern sponges), epitheliomuscular tissues (with a concentration of actomyosin cables in basal processes, for example in sea anemones), and specialized muscle tissue that has lost most or all epithelial properties (as in ctenophores, jellyfish and bilaterians). Recent studies in a broad range of metazoans have begun to reveal the molecular basis of these transitions, powered by the elaboration of the contractile apparatus and the evolution of 'core regulatory complexes' of transcription factors specifying contractile cell identity.
Collapse
Affiliation(s)
- Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
6
|
Steinmetz PRH. Development: Sea anemone segments polarise. Curr Biol 2023; 33:R717-R719. [PMID: 37433272 DOI: 10.1016/j.cub.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The evolutionary origin of animal segmentation has been debated for centuries. A new study now reveals genetic similarities between the patterning of segmental pouches in a sea anemone, traditionally considered as unsegmented, and segmental structures of vertebrates and arthropods.
Collapse
Affiliation(s)
- Patrick R H Steinmetz
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway.
| |
Collapse
|