1
|
Ceccarelli F, Londei F, Arena G, Genovesio A, Ferrucci L. Home-Cage Training for Non-Human Primates: An Opportunity to Reduce Stress and Study Natural Behavior in Neurophysiology Experiments. Animals (Basel) 2025; 15:1340. [PMID: 40362154 PMCID: PMC12071079 DOI: 10.3390/ani15091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Research involving non-human primates remains a cornerstone in fields such as biomedical research and systems neuroscience. However, the daily routines of laboratory work can induce stress in these animals, potentially compromising their well-being and the reliability of experimental outcomes. To address this, many laboratories have adopted home-cage training protocols to mitigate stress caused by routine procedures such as transport and restraint-a factor that can impact both macaque physiology and experimental validity. This review explores the primary methods and experimental setups employed in home-cage training, highlighting their potential not only to address ethical concerns surrounding animal welfare but also to reduce training time and risks for the researchers. Furthermore, by combining home-cage training with wireless recordings, it becomes possible to expand research opportunities in behavioral neurophysiology with non-human primates. This approach enables the study of various cognitive processes in more naturalistic settings, thereby increasing the ecological validity of scientific findings through innovative experimental designs that thoroughly investigate the complexity of the animals' natural behavior.
Collapse
Affiliation(s)
- Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.L.); (G.A.)
| | - Fabrizio Londei
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.L.); (G.A.)
| | - Giulia Arena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.L.); (G.A.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Via Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
- Behavioral Neuroscience PhD Program, Sapienza University, 00185 Rome, Italy
| | - Aldo Genovesio
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.L.); (G.A.)
| |
Collapse
|
2
|
Martins DM, Manda JM, Goard MJ, Parker PRL. Building egocentric models of local space from retinal input. Curr Biol 2024; 34:R1185-R1202. [PMID: 39626632 PMCID: PMC11620475 DOI: 10.1016/j.cub.2024.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Determining the location of objects relative to ourselves is essential for interacting with the world. Neural activity in the retina is used to form a vision-independent model of the local spatial environment relative to the body. For example, when an animal navigates through a forest, it rapidly shifts its gaze to identify the position of important objects, such as a tree obstructing its path. This seemingly trivial behavior belies a sophisticated neural computation. Visual information entering the brain in a retinocentric reference frame must be transformed into an egocentric reference frame to guide motor planning and action. This, in turn, allows the animal to extract the location of the tree and plan a path around it. In this review, we explore the anatomical, physiological, and computational implementation of retinocentric-to-egocentric reference frame transformations - a research area undergoing rapid progress stimulated by an ever-expanding molecular, physiological, and computational toolbox for probing neural circuits. We begin by summarizing evidence for retinocentric and egocentric reference frames in the brains of diverse organisms, from insects to primates. Next, we cover how distance estimation contributes to creating a three-dimensional representation of local space. We then review proposed implementations of reference frame transformations across different biological and artificial neural networks. Finally, we discuss how an internal egocentric model of the environment is maintained independently of the sensory inputs from which it is derived. By comparing findings across a variety of nervous systems and behaviors, we aim to inspire new avenues for investigating the neural basis of reference frame transformation, a canonical computation critical for modeling the external environment and guiding goal-directed behavior.
Collapse
Affiliation(s)
- Dylan M Martins
- Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Joy M Manda
- Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Michael J Goard
- Department of Psychological and Brain Sciences and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Philip R L Parker
- Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, New Brunswick, NJ 08854, USA.
| |
Collapse
|
3
|
Li J, Aoi MC, Miller CT. Representing the dynamics of natural marmoset vocal behaviors in frontal cortex. Neuron 2024; 112:3542-3550.e3. [PMID: 39317185 PMCID: PMC11560606 DOI: 10.1016/j.neuron.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
Here, we tested the respective contributions of primate premotor and prefrontal cortex to support vocal behavior. We applied a model-based generalized linear model (GLM) analysis that better accounts for the inherent variance in natural, continuous behaviors to characterize the activity of neurons throughout the frontal cortex as freely moving marmosets engaged in conversational exchanges. While analyses revealed functional clusters of neural activity related to the different processes involved in the vocal behavior, these clusters did not map to subfields of prefrontal or premotor cortex, as has been observed in more conventional task-based paradigms. Our results suggest a distributed functional organization for the myriad neural mechanisms underlying natural social interactions and have implications for our concepts of the role that frontal cortex plays in governing ethological behaviors in primates.
Collapse
Affiliation(s)
- Jingwen Li
- Cortical Systems & Behavior Lab, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Mikio C Aoi
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cory T Miller
- Cortical Systems & Behavior Lab, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Thompson JC, Parkinson C. Interactions between neural representations of the social and spatial environment. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220522. [PMID: 39230453 PMCID: PMC11449203 DOI: 10.1098/rstb.2022.0522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 09/05/2024] Open
Abstract
Even in our highly interconnected modern world, geographic factors play an important role in human social connections. Similarly, social relationships influence how and where we travel, and how we think about our spatial world. Here, we review the growing body of neuroscience research that is revealing multiple interactions between social and spatial processes in both humans and non-human animals. We review research on the cognitive and neural representation of spatial and social information, and highlight recent findings suggesting that underlying mechanisms might be common to both. We discuss how spatial factors can influence social behaviour, and how social concepts modify representations of space. In so doing, this review elucidates not only how neural representations of social and spatial information interact but also similarities in how the brain represents and operates on analogous information about its social and spatial surroundings.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- James C. Thompson
- Department of Psychology, and Center for Adaptive Systems of Brain-Body Interactions, George Mason University, MS3F5 4400 University Drive, Fairfax, VA22030, USA
| | - Carolyn Parkinson
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Leopold DA. The big mixup: Neural representation during natural modes of primate visual behavior. Curr Opin Neurobiol 2024; 88:102913. [PMID: 39214044 PMCID: PMC11392606 DOI: 10.1016/j.conb.2024.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The primate brain has evolved specialized visual capacities to navigate complex physical and social environments. Researchers studying cortical circuits underlying these capacities have traditionally favored the use of simplified tasks and brief stimulus presentations in order to isolate cognitive variables with tight experimental control. As a result, operational theories about visual brain function have come to emphasize feature detection, hierarchical stimulus encoding, top-down task modulation, and functional segregation in distinct cortical areas. Recently, however, experimental paradigms combining natural behavior with electrophysiological recordings have begun to offer a distinctly different portrait of how the brain takes in and analyzes its visual surroundings. The present article reviews recent work in this area, highlighting some of the more surprising findings in domains of social vision and spatial navigation along with shifts in thinking that have begun to emanate from this approach.
Collapse
Affiliation(s)
- David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD 20892, USA; National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Cisek P, Green AM. Toward a neuroscience of natural behavior. Curr Opin Neurobiol 2024; 86:102859. [PMID: 38583263 DOI: 10.1016/j.conb.2024.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
One of the most exciting new developments in systems neuroscience is the progress being made toward neurophysiological experiments that move beyond simplified laboratory settings and address the richness of natural behavior. This is enabled by technological advances such as wireless recording in freely moving animals, automated quantification of behavior, and new methods for analyzing large data sets. Beyond new empirical methods and data, however, there is also a need for new theories and concepts to interpret that data. Such theories need to address the particular challenges of natural behavior, which often differ significantly from the scenarios studied in traditional laboratory settings. Here, we discuss some strategies for developing such novel theories and concepts and some example hypotheses being proposed.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada.
| | - Andrea M Green
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada
| |
Collapse
|
7
|
Tillmann JF, Hsu AI, Schwarz MK, Yttri EA. A-SOiD, an active-learning platform for expert-guided, data-efficient discovery of behavior. Nat Methods 2024; 21:703-711. [PMID: 38383746 DOI: 10.1038/s41592-024-02200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
To identify and extract naturalistic behavior, two methods have become popular: supervised and unsupervised. Each approach carries its own strengths and weaknesses (for example, user bias, training cost, complexity and action discovery), which the user must consider in their decision. Here, an active-learning platform, A-SOiD, blends these strengths, and in doing so, overcomes several of their inherent drawbacks. A-SOiD iteratively learns user-defined groups with a fraction of the usual training data, while attaining expansive classification through directed unsupervised classification. In socially interacting mice, A-SOiD outperformed standard methods despite requiring 85% less training data. Additionally, it isolated ethologically distinct mouse interactions via unsupervised classification. We observed similar performance and efficiency using nonhuman primate and human three-dimensional pose data. In both cases, the transparency in A-SOiD's cluster definitions revealed the defining features of the supervised classification through a game-theoretic approach. To facilitate use, A-SOiD comes as an intuitive, open-source interface for efficient segmentation of user-defined behaviors and discovered sub-actions.
Collapse
Affiliation(s)
- Jens F Tillmann
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Alexander I Hsu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Martin K Schwarz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.
| | - Eric A Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Li J, Aoi MC, Miller CT. Representing the dynamics of natural marmoset vocal behaviors in frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585423. [PMID: 38559173 PMCID: PMC10979968 DOI: 10.1101/2024.03.17.585423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Here we tested the respective contributions of primate premotor and prefrontal cortex to support vocal behavior. We applied a model-based GLM analysis that better accounts for the inherent variance in natural, continuous behaviors to characterize the activity of neurons throughout frontal cortex as freely-moving marmosets engaged in conversational exchanges. While analyses revealed functional clusters of neural activity related to the different processes involved in the vocal behavior, these clusters did not map to subfields of prefrontal or premotor cortex, as has been observed in more conventional task-based paradigms. Our results suggest a distributed functional organization for the myriad neural mechanisms underlying natural social interactions and has implications for our concepts of the role that frontal cortex plays in governing ethological behaviors in primates.
Collapse
|
9
|
Manea AMG, Maisson DJN, Voloh B, Zilverstand A, Hayden B, Zimmermann J. Neural timescales reflect behavioral demands in freely moving rhesus macaques. Nat Commun 2024; 15:2151. [PMID: 38461167 PMCID: PMC10925022 DOI: 10.1038/s41467-024-46488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
Previous work demonstrated a highly reproducible cortical hierarchy of neural timescales at rest, with sensory areas displaying fast, and higher-order association areas displaying slower timescales. The question arises how such stable hierarchies give rise to adaptive behavior that requires flexible adjustment of temporal coding and integration demands. Potentially, this lack of variability in the hierarchical organization of neural timescales could reflect the structure of the laboratory contexts. We posit that unconstrained paradigms are ideal to test whether the dynamics of neural timescales reflect behavioral demands. Here we measured timescales of local field potential activity while male rhesus macaques foraged in an open space. We found a hierarchy of neural timescales that differs from previous work. Importantly, although the magnitude of neural timescales expanded with task engagement, the brain areas' relative position in the hierarchy was stable. Next, we demonstrated that the change in neural timescales is dynamic and contains functionally-relevant information, differentiating between similar events in terms of motor demands and associated reward. Finally, we demonstrated that brain areas are differentially affected by these behavioral demands. These results demonstrate that while the space of neural timescales is anatomically constrained, the observed hierarchical organization and magnitude is dependent on behavioral demands.
Collapse
Affiliation(s)
- Ana M G Manea
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| | - David J-N Maisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Voloh
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Voloh B, Maisson DJN, Cervera RL, Conover I, Zambre M, Hayden B, Zimmermann J. Hierarchical action encoding in prefrontal cortex of freely moving macaques. Cell Rep 2023; 42:113091. [PMID: 37656619 PMCID: PMC10591875 DOI: 10.1016/j.celrep.2023.113091] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/23/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023] Open
Abstract
Our natural behavioral repertoires include coordinated actions of characteristic types. To better understand how neural activity relates to the expression of actions and action switches, we studied macaques performing a freely moving foraging task in an open environment. We developed a novel analysis pipeline that can identify meaningful units of behavior, corresponding to recognizable actions such as sitting, walking, jumping, and climbing. On the basis of transition probabilities between these actions, we found that behavior is organized in a modular and hierarchical fashion. We found that, after regressing out many potential confounders, actions are associated with specific patterns of firing in each of six prefrontal brain regions and that, overall, encoding of action category is progressively stronger in more dorsal and more caudal prefrontal regions. Together, these results establish a link between selection of units of primate behavior on one hand and neuronal activity in prefrontal regions on the other.
Collapse
Affiliation(s)
- Benjamin Voloh
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - David J-N Maisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Indirah Conover
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mrunal Zambre
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin Hayden
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
11
|
Hardcastle K. Spatial cognition: Uncovering navigational representations in prefrontal cortices. Curr Biol 2023; 33:R855-R857. [PMID: 37607479 DOI: 10.1016/j.cub.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A new study identifies representations of navigational variables in six prefrontal regions in freely moving macaques, expanding our view of how the brain represents space outside of the broader hippocampal formation.
Collapse
Affiliation(s)
- Kiah Hardcastle
- Harvard University, Department of Organismic and Evolutionary Biology, 52 Oxford St, Cambridge, MA 02138, USA.
| |
Collapse
|