1
|
Tarvin RD, Coleman JL, Donoso DA, Betancourth-Cundar M, López-Hervas K, Gleason KS, Sanders JR, Smith JM, Ron SR, Santos JC, Sedio BE, Cannatella DC, Fitch RW. Passive accumulation of alkaloids in inconspicuously colored frogs refines the evolutionary paradigm of acquired chemical defenses. eLife 2024; 13:RP100011. [PMID: 39728927 DOI: 10.7554/elife.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration - passive accumulation - that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.
Collapse
Affiliation(s)
- Rebecca D Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Jeffrey L Coleman
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, United States
- Smithsonian Tropical Research Institute, Ancón, Panama
| | - David A Donoso
- Grupo de Investigación en Ecología Evolutiva en los Trópicos (EETROP), Universidad de las Américas, Quito, Ecuador
- Ecological Networks Lab, Technische Universität Darmstadt, Darmstadt, Germany
| | - Mileidy Betancourth-Cundar
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
- Department of Biology, Stanford University, Palo Alto, United States
| | | | - Kimberly S Gleason
- Department of Chemistry and Physics, Indiana State University, Terre Haute, United States
| | - J Ryan Sanders
- Department of Chemistry and Physics, Indiana State University, Terre Haute, United States
| | - Jacqueline M Smith
- Department of Chemistry and Physics, Indiana State University, Terre Haute, United States
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan C Santos
- Department of Biological Sciences, St John's University, New York, United States
| | - Brian E Sedio
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, United States
- Smithsonian Tropical Research Institute, Ancón, Panama
| | - David C Cannatella
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, United States
| | - Richard W Fitch
- Department of Chemistry and Physics, Indiana State University, Terre Haute, United States
| |
Collapse
|
2
|
Tarvin RD, Coleman JL, Donoso DA, Betancourth-Cundar M, López-Hervas K, Gleason KS, Sanders JR, Smith JM, Ron SR, Santos JC, Sedio BE, Cannatella DC, Fitch R. Passive accumulation of alkaloids in inconspicuously colored frogs refines the evolutionary paradigm of acquired chemical defenses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593697. [PMID: 38798461 PMCID: PMC11118485 DOI: 10.1101/2024.05.13.593697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration - passive accumulation - that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.
Collapse
Affiliation(s)
- Rebecca D. Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Jeffrey L. Coleman
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, TX 78712 USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - David A. Donoso
- Grupo de Investigación en Ecología Evolutiva en los Trópicos (EETROP), Universidad de las Américas, Quito, Ecuador
- Ecological Networks Lab, Technische Universität Darmstadt, Darmstadt, Germany
| | - Mileidy Betancourth-Cundar
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia, 111711
- Department of Biology, Stanford University, Palo Alto, CA, 94305, USA
| | | | - Kimberly S. Gleason
- Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA
| | - J. Ryan Sanders
- Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA
| | - Jacqueline M. Smith
- Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA
| | - Santiago R. Ron
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan C. Santos
- Department of Biological Sciences, St John’s University, NY, USA 11439
| | - Brian E. Sedio
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, TX 78712 USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - David C. Cannatella
- Department of Integrative Biology and Biodiversity Collections, University of Texas at Austin, Austin, TX 78712 USA
| | - Richard Fitch
- Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA
| |
Collapse
|
3
|
Zhu C, Lu X, Cai T, Zhu K, Shi L, Chen Y, Wang T, Yang Y, Tu D, Fu Q, Huang J, Zhen Y. Firefly toxin lucibufagins evolved after the origin of bioluminescence. PNAS NEXUS 2024; 3:pgae215. [PMID: 38919269 PMCID: PMC11197309 DOI: 10.1093/pnasnexus/pgae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Fireflies were believed to originally evolve their novel bioluminescence as warning signals to advertise their toxicity to predators, which was later adopted in adult mating. Although the evolution of bioluminescence has been investigated extensively, the warning signal hypothesis of its origin has not been tested. In this study, we test this hypothesis by systematically determining the presence or absence of firefly toxin lucibufagins (LBGs) across firefly species and inferring the time of origin of LBGs. We confirm the presence of LBGs in the subfamily Lampyrinae, but more importantly, we reveal the absence of LBGs in other lineages, including the subfamilies of Luciolinae, Ototretinae, and Psilocladinae, two incertae sedis lineages, and the Rhagophthalmidae family. Ancestral state reconstructions for LBGs based on firefly phylogeny constructed using genomic data suggest that the presence of LBGs in the common ancestor of the Lampyrinae subfamily is highly supported but unsupported in more ancient nodes, including firefly common ancestors. Our results suggest that firefly LBGs probably evolved much later than the evolution of bioluminescence. We thus conclude that firefly bioluminescence did not originally evolve as direct warning signals for toxic LBGs and advise that future studies should focus on other hypotheses. Moreover, LBG toxins are known to directly target and inhibit the α subunit of Na+, K+-ATPase (ATPα). We further examine the effects of amino acid substitutions in firefly ATPα on its interactions with LBGs. We find that ATPα in LBG-containing fireflies is relatively insensitive to LBGs, which suggests that target-site insensitivity contributes to LBG-containing fireflies' ability to deal with their own toxins.
Collapse
Affiliation(s)
- Chengqi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiaoli Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Tianlong Cai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Kangli Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Lina Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yinjuan Chen
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Tianyu Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yaoming Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Dandan Tu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Qi Fu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Ying Zhen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
4
|
Maquitico Y, Coronado J, Luna A, Vergara A, Cordero C. Deceptive Seduction by Femme Fatale Fireflies and Its Avoidance by Males of a Synchronous Firefly Species (Coleoptera: Lampyridae). INSECTS 2024; 15:78. [PMID: 38276827 PMCID: PMC10816684 DOI: 10.3390/insects15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Photuris female fireflies attract males of different firefly species by responding to their flashing signals; then, they try to capture and feed on them. This aggressive mimicry is considered a major selective pressure on the communication systems of the fireflies of the American continent. The intensity of this selective pressure is a function of its efficiency in prey capture. In this study, the rates of attraction and capture of males of the synchronous firefly Photinus palaciosi by the predatory females of Photuris lugubris are reported. Although the females attract numerous males, their hunting success is low. This result is consistent with the few previous measurements published. In agreement with the predicted coevolutionary race between predator and prey, behaviors consistent with predation avoidance in P. palaciosi and increasing prey encounters and prey deception by P. lugubris were observed.
Collapse
Affiliation(s)
- Yara Maquitico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria CDMX 04510, Mexico;
| | - Jazmín Coronado
- Licenciatura en Biología, Universidad Autónoma Metropolitana-Unidad Xochimilco, Ciudad Universitaria CDMX 04960, Mexico;
| | - Andrea Luna
- Licenciatura de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria CDMX 04510, Mexico;
| | - Aldair Vergara
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla EDOMEX 54090, Mexico;
| | - Carlos Cordero
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria CDMX 04510, Mexico
| |
Collapse
|