1
|
Fernández-Morales JC, Padín JF, Arranz-Tagarro JA, Vestring S, García AG, de Diego AMG. Hypoxia-elicited catecholamine release is controlled by L-type as well as N/PQ types of calcium channels in rat embryo chromaffin cells. Am J Physiol Cell Physiol 2014; 307:C455-65. [PMID: 24990647 DOI: 10.1152/ajpcell.00101.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At early life, the adrenal chromaffin cells respond with a catecholamine surge under hypoxic conditions. This response depends on Ca(2+) entry through voltage-activated calcium channels (VACCs). We have investigated here three unresolved questions that concern this response in rat embryo chromaffin cells (ECCs): 1) the relative contribution of L (α1D, Cav1.3), N (α1B, Cav2.2), and PQ (α1A, Cav2.1) to the whole cell Ca(2+) current (ICa); 2) the relative contribution of L and N/PQ channels to the cytosolic Ca(2+) elevations triggered by hypoxia (Δ[Ca(2+)]c); and 3) the role of L and non-L high-VACCs in the regulation of the catecholamine surge occurring during prolonged (1 min) hypoxia exposure of ECCs. Nimodipine halved peak ICa and blocked 60% the total Ca(2+) entry during a 50-ms depolarizing pulse to 0 mV (QCa). Combined ω-agatoxin IVA plus ω-conotoxin GVIA (Aga/GVIA) blocked 30% of both ICa peak and QCa. This relative proportion of L- and non-L VACCs was corroborated by Western blot that indicated 55, 23, and 25% relative expression of L, N, and PQ VACCs. Exposure of ECCs to hypoxia elicited a mild but sustained Δ[Ca(2+)]c; the area of Δ[Ca(2+)]c was blocked 50% by nifedipine and 10% by Aga/GVIA. Exposure of ECCs to 1-min hypoxia elicited an initial transient burst of amperometric secretory spikes followed by scattered spikes along the time of cell exposure to hypoxia. This bulk response was blocked 85% by nimodipine and 35% by Aga/GVIA. Histograms on secretory spike frequency vs. time indicated a faster initial inactivation when Ca(2+) entry took place through N/PQ channels; more sustained secretion but at a lower rate was associated to Ca(2+) entry through L channels. The results suggest that the HIS response may initially be controlled by L and P/Q channels, but later on, N/PQ channels inactivate and the delayed HIS response is maintained at lower rate by slow-inactivating L channels.
Collapse
Affiliation(s)
- José-Carlos Fernández-Morales
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan-Fernando Padín
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan-Alberto Arranz-Tagarro
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Stefan Vestring
- Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Antonio G García
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain; and
| | - Antonio Miguel G de Diego
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain;
| |
Collapse
|
2
|
Hyde MJ, Mostyn A, Modi N, Kemp PR. The health implications of birth by Caesarean section. Biol Rev Camb Philos Soc 2011; 87:229-43. [PMID: 21815988 DOI: 10.1111/j.1469-185x.2011.00195.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the first mention of fetal programming of adult health and disease, a plethora of programming events in early life has been suggested. These have included intrauterine and postnatal events, but limited attention has been given to the potential contribution of the birth process to normal physiology and long-term health. Over the last 30 years a growing number of studies have demonstrated that babies born at term by vaginal delivery (VD) have significantly different physiology at birth to those born by Caesarean section (CS), particularly when there has been no exposure to labour, i.e. pre-labour CS (PLCS). This literature is reviewed here and the processes involved in VD that might programme post-natal development are discussed. Some of the effects of CS are short term, but longer term problems are also apparent. We suggest that VD initiates important physiological trajectories and the absence of this stimulus in CS has implications for adult health. There are a number of factors that might plausibly contribute to this programming, one of which is the hormonal surge or "stress response" of VD. Given the increasing incidence of elective PLCS, an understanding of the effects of VD on normal development is crucial.
Collapse
Affiliation(s)
- Matthew J Hyde
- Section of Neonatal Medicine, Department of Medicine, Imperial College London, Chelsea and Westminster Campus, London, UK.
| | | | | | | |
Collapse
|
3
|
Impact of route of delivery upon regulators of adipose tissue lipid metabolism in the pig. Proc Nutr Soc 2011. [DOI: 10.1017/s0029665111000449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|