1
|
Pencovich N, Smith BH, Attia ZI, Jimenez FL, Bentall AJ, Schinstock CA, Khamash HA, Jadlowiec CC, Jarmi T, Mao SA, Park WD, Diwan TS, Friedman PA, Stegall MD. Electrocardiography-based Artificial Intelligence Algorithms Aid in Prediction of Long-term Mortality After Kidney Transplantation. Transplantation 2024; 108:1976-1985. [PMID: 38557657 DOI: 10.1097/tp.0000000000005023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Predicting long-term mortality postkidney transplantation (KT) using baseline clinical data presents significant challenges. This study aims to evaluate the predictive power of artificial intelligence (AI)-enabled analysis of preoperative electrocardiograms (ECGs) in forecasting long-term mortality following KT. METHODS We analyzed preoperative ECGs from KT recipients at three Mayo Clinic sites (Minnesota, Florida, and Arizona) between January 1, 2006, and July 30, 2021. The study involved 6 validated AI algorithms, each trained to predict future development of atrial fibrillation, aortic stenosis, low ejection fraction, hypertrophic cardiomyopathy, amyloid heart disease, and biological age. These algorithms' outputs based on a single preoperative ECG were correlated with patient mortality data. RESULTS Among 6504 KT recipients included in the study, 1764 (27.1%) died within a median follow-up of 5.7 y (interquartile range: 3.00-9.29 y). All AI-ECG algorithms were independently associated with long-term all-cause mortality ( P < 0.001). Notably, few patients had a clinical cardiac diagnosis at the time of transplant, indicating that AI-ECG scores were predictive even in asymptomatic patients. When adjusted for multiple clinical factors such as recipient age, diabetes, and pretransplant dialysis, AI algorithms for atrial fibrillation and aortic stenosis remained independently associated with long-term mortality. These algorithms also improved the C-statistic for predicting overall (C = 0.74) and cardiac-related deaths (C = 0.751). CONCLUSIONS The findings suggest that AI-enabled preoperative ECG analysis can be a valuable tool in predicting long-term mortality following KT and could aid in identifying patients who may benefit from enhanced cardiac monitoring because of increased risk.
Collapse
Affiliation(s)
- Niv Pencovich
- Departments of Surgery and Immunology, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv, Israel
| | - Byron H Smith
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Zachi I Attia
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | | | - Andrew J Bentall
- Departments of Surgery and Immunology, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
| | - Carrie A Schinstock
- Departments of Surgery and Immunology, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
| | | | | | - Tambi Jarmi
- Department of Transplant, Mayo Clinic Florida, Jacksonville, FL
| | - Shennen A Mao
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Phoenix, AZ
| | - Walter D Park
- Departments of Surgery and Immunology, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
| | - Tayyab S Diwan
- Departments of Surgery and Immunology, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
| | - Paul A Friedman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Mark D Stegall
- Departments of Surgery and Immunology, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
| |
Collapse
|
2
|
Stamate E, Piraianu AI, Ciobotaru OR, Crassas R, Duca O, Fulga A, Grigore I, Vintila V, Fulga I, Ciobotaru OC. Revolutionizing Cardiology through Artificial Intelligence-Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment-A Comprehensive Review of the Past 5 Years. Diagnostics (Basel) 2024; 14:1103. [PMID: 38893630 PMCID: PMC11172021 DOI: 10.3390/diagnostics14111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) can radically change almost every aspect of the human experience. In the medical field, there are numerous applications of AI and subsequently, in a relatively short time, significant progress has been made. Cardiology is not immune to this trend, this fact being supported by the exponential increase in the number of publications in which the algorithms play an important role in data analysis, pattern discovery, identification of anomalies, and therapeutic decision making. Furthermore, with technological development, there have appeared new models of machine learning (ML) and deep learning (DP) that are capable of exploring various applications of AI in cardiology, including areas such as prevention, cardiovascular imaging, electrophysiology, interventional cardiology, and many others. In this sense, the present article aims to provide a general vision of the current state of AI use in cardiology. RESULTS We identified and included a subset of 200 papers directly relevant to the current research covering a wide range of applications. Thus, this paper presents AI applications in cardiovascular imaging, arithmology, clinical or emergency cardiology, cardiovascular prevention, and interventional procedures in a summarized manner. Recent studies from the highly scientific literature demonstrate the feasibility and advantages of using AI in different branches of cardiology. CONCLUSIONS The integration of AI in cardiology offers promising perspectives for increasing accuracy by decreasing the error rate and increasing efficiency in cardiovascular practice. From predicting the risk of sudden death or the ability to respond to cardiac resynchronization therapy to the diagnosis of pulmonary embolism or the early detection of valvular diseases, AI algorithms have shown their potential to mitigate human error and provide feasible solutions. At the same time, limits imposed by the small samples studied are highlighted alongside the challenges presented by ethical implementation; these relate to legal implications regarding responsibility and decision making processes, ensuring patient confidentiality and data security. All these constitute future research directions that will allow the integration of AI in the progress of cardiology.
Collapse
Affiliation(s)
- Elena Stamate
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (E.S.); (V.V.)
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
| | - Alin-Ionut Piraianu
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
| | - Oana Roxana Ciobotaru
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Railway Hospital Galati, 800223 Galati, Romania
| | - Rodica Crassas
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Oana Duca
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Ana Fulga
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei Street, 800578 Galati, Romania
| | - Ionica Grigore
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Vlad Vintila
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (E.S.); (V.V.)
- Clinical Department of Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 37 Dionisie Lupu Street, 4192910 Bucharest, Romania
| | - Iuliu Fulga
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei Street, 800578 Galati, Romania
| | - Octavian Catalin Ciobotaru
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Railway Hospital Galati, 800223 Galati, Romania
| |
Collapse
|
3
|
Harmon DM, Sehrawat O, Maanja M, Wight J, Noseworthy PA. Artificial Intelligence for the Detection and Treatment of Atrial Fibrillation. Arrhythm Electrophysiol Rev 2023; 12:e12. [PMID: 37427304 PMCID: PMC10326669 DOI: 10.15420/aer.2022.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 07/11/2023] Open
Abstract
AF is the most common clinically relevant cardiac arrhythmia associated with multiple comorbidities, cardiovascular complications (e.g. stroke) and increased mortality. As artificial intelligence (AI) continues to transform the practice of medicine, this review article highlights specific applications of AI for the screening, diagnosis and treatment of AF. Routinely used digital devices and diagnostic technology have been significantly enhanced by these AI algorithms, increasing the potential for large-scale population-based screening and improved diagnostic assessments. These technologies have similarly impacted the treatment pathway of AF, identifying patients who may benefit from specific therapeutic interventions. While the application of AI to the diagnostic and therapeutic pathway of AF has been tremendously successful, the pitfalls and limitations of these algorithms must be thoroughly considered. Overall, the multifaceted applications of AI for AF are a hallmark of this emerging era of medicine.
Collapse
Affiliation(s)
- David M Harmon
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, US
| | - Ojasav Sehrawat
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, US
| | - Maren Maanja
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, US
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - John Wight
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, US
| | | |
Collapse
|
4
|
Martínez-Sellés M, Marina-Breysse M. Current and Future Use of Artificial Intelligence in Electrocardiography. J Cardiovasc Dev Dis 2023; 10:jcdd10040175. [PMID: 37103054 PMCID: PMC10145690 DOI: 10.3390/jcdd10040175] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/28/2023] Open
Abstract
Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed.
Collapse
Affiliation(s)
- Manuel Martínez-Sellés
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Europea, Villaviciosa de Odón, 28670 Madrid, Spain
- Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | - Manuel Marina-Breysse
- Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- IDOVEN Research, 28013 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Myocardial Pathophysiology Area, 28029 Madrid, Spain
| |
Collapse
|
5
|
LI XM, GAO XY, Tse G, HONG SD, CHEN KY, LI GP, LIU T. Electrocardiogram-based artificial intelligence for the diagnosis of heart failure: a systematic review and meta-analysis. J Geriatr Cardiol 2022; 19:970-980. [PMID: 36632204 PMCID: PMC9807402 DOI: 10.11909/j.issn.1671-5411.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The electrocardiogram (ECG) is an inexpensive and easily accessible investigation for the diagnosis of cardiovascular diseases including heart failure (HF). The application of artificial intelligence (AI) has contributed to clinical practice in terms of aiding diagnosis, prognosis, risk stratification and guiding clinical management. The aim of this study is to systematically review and perform a meta-analysis of published studies on the application of AI for HF detection based on the ECG. METHODS We searched Embase, PubMed and Web of Science databases to identify literature using AI for HF detection based on ECG data. The quality of included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) criteria. Random-effects models were used for calculating the effect estimates and hierarchical receiver operating characteristic curves were plotted. Subgroup analysis was performed. Heterogeneity and the risk of bias were also assessed. RESULTS A total of 11 studies including 104,737 subjects were included. The area under the curve for HF diagnosis was 0.986, with a corresponding pooled sensitivity of 0.95 (95% CI: 0.86-0.98), specificity of 0.98 (95% CI: 0.95-0.99) and diagnostic odds ratio of 831.51 (95% CI: 127.85-5407.74). In the patient selection domain of QUADAS-2, eight studies were designated as high risk. CONCLUSIONS According to the available evidence, the incorporation of AI can aid the diagnosis of HF. However, there is heterogeneity among machine learning algorithms and improvements are required in terms of quality and study design.
Collapse
Affiliation(s)
- Xin-Mu LI
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xin-Yi GAO
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Kent and Medway Medical School, Canterbury, United Kingdom
| | - Shen-Da HONG
- National Institute of Health Data Science at Peking University, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Kang-Yin CHEN
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guang-Ping LI
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong LIU
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Harmon DM, Malik A, Nishimura R. Progression of Calcific Aortic Stenosis Detected by Artificial Intelligence Electrocardiogram. Mayo Clin Proc 2022; 97:1211-1212. [PMID: 35662434 PMCID: PMC9219004 DOI: 10.1016/j.mayocp.2022.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Affiliation(s)
- David M Harmon
- Department of Internal Medicine, Mayo Clinic School of Graduate Medical Education; Department of Cardiovascular Medicine, Rochester, MN, USA
| | - Awais Malik
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Rick Nishimura
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|