1
|
Laseca N, Molina A, Perdomo-González D, Ziadi C, Azor PJ, Valera M. Exploring the Genetic Landscape of Vitiligo in the Pura Raza Español Horse: A Genomic Perspective. Animals (Basel) 2024; 14:2420. [PMID: 39199954 PMCID: PMC11350783 DOI: 10.3390/ani14162420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Vitiligo is a depigmentation autoimmune disorder characterized by the progressive loss of melanocytes leading to the appearance of patchy depigmentation of the skin. The presence of vitiligo in horses is greater in those with grey coats. The aim of this study was therefore to perform a genome-wide association study (GWAS) to identify genomic regions and putative candidate loci associated with vitiligo depigmentation and susceptibility in the Pura Raza Español population. For this purpose, we performed a wssGBLUP (weighted single step genomic best linear unbiased prediction) using data from a total of 2359 animals genotyped with Affymetrix Axiom™ Equine 670 K and 1346 with Equine GeneSeek Genomic Profiler™ (GGP) Array V5. A total of 60,136 SNPs (single nucleotide polymorphisms) present on the 32 chromosomes from the consensus dataset after quality control were employed for the analysis. Vitiligo-like depigmentation was phenotyped by visual inspection of the different affected areas (eyes, mouth, nostrils) and was classified into nine categories with three degrees of severity (absent, slight, and severe). We identified one significant genomic region for vitiligo around the eyes, eight significant genomic regions for vitiligo around the mouth, and seven significant genomic regions for vitiligo around the nostrils, which explained the highest percentage of variance. These significant genomic regions contained candidate genes related to melanocytes, skin, immune system, tumour suppression, metastasis, and cutaneous carcinoma. These findings enable us to implement selective breeding strategies to decrease the incidence of vitiligo and to elucidate the genetic architecture underlying vitiligo in horses as well as the molecular mechanisms involved in the disease's development. However, further studies are needed to better understand this skin disorder in horses.
Collapse
Affiliation(s)
- Nora Laseca
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. Utrera Km 1, 41013 Sevilla, Spain; (N.L.); (D.P.-G.)
- Real Asociación Nacional de Criadores de Caballos de Pura Raza Española (ANCCE), Cortijo de Cuarto (Viejo), 41014 Sevilla, Spain;
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, Ctra. Madrid Km 396, 44014 Córdoba, Spain; (A.M.); (C.Z.)
| | - Davinia Perdomo-González
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. Utrera Km 1, 41013 Sevilla, Spain; (N.L.); (D.P.-G.)
| | - Chiraz Ziadi
- Departamento de Genética, Universidad de Córdoba, Ctra. Madrid Km 396, 44014 Córdoba, Spain; (A.M.); (C.Z.)
| | - Pedro J. Azor
- Real Asociación Nacional de Criadores de Caballos de Pura Raza Española (ANCCE), Cortijo de Cuarto (Viejo), 41014 Sevilla, Spain;
| | - Mercedes Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. Utrera Km 1, 41013 Sevilla, Spain; (N.L.); (D.P.-G.)
| |
Collapse
|
2
|
Brys M, Claerebout E, Chiers K. Chronic Progressive Lymphedema in Belgian Draft Horses: Understanding and Managing a Challenging Disease. Vet Sci 2023; 10:vetsci10050347. [PMID: 37235431 DOI: 10.3390/vetsci10050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic progressive lymphedema (CPL) in draft horses is characterized by increased dermal thickness and fibrosis, with the development of skinfolds and nodules, hyperkeratosis, and ulcerations on the distal limbs of affected horses. Secondary bacterial, fungal, or parasitic infections frequently complicate and aggravate the lesions, as well as the progression of this disease. CPL has a particularly high prevalence of up to 85.86% in the Belgian draft horse breed. Due to the disease's progressive and incurable nature, affected horses are often euthanized prematurely. The treatment options are solely symptomatic, aimed at improving the horse's quality of life. Despite the severity of this condition, many uncertainties about its etiology and pathogenesis still remain to date. The established scientific research on CPL is rather limited, although there is an urgent need for strategies to tackle this disease. This review summarizes the available knowledge, serving as a guideline for practitioners, and provides perspectives for future research programs.
Collapse
Affiliation(s)
- Marieke Brys
- Laboratory of Veterinary Pathology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Edwin Claerebout
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Koen Chiers
- Laboratory of Veterinary Pathology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
3
|
Equine Melanocytic Tumors: A Narrative Review. Animals (Basel) 2023; 13:ani13020247. [PMID: 36670786 PMCID: PMC9855132 DOI: 10.3390/ani13020247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Adult grey horses have a high incidence of melanocytic tumors. This article narratively reviews the role of some genetic features related to melanoma formation in horses, such as STX17 mutation, ASIP or MITF alterations, and the link between the graying process and the development of these tumors. A clear system of clinical and pathological classification of melanocytic tumors in naevus, dermal melanoma, dermal melanomatosis and anaplastic malignant melanoma is provided. Clinical and laboratorial methods of diagnosing are listed, with fine needle aspiration and histopathology being the most relevant. Relevance is given to immunohistochemistry, describing potentially important diagnostic biomarkers such as RACK1 and PNL2. Different therapeutical options available for equine practitioners are mentioned, with surgery, chemotherapy and electroporation being the most common. This article also elucidatesnew fields of research, perspectives, and new therapeutic targets, such as CD47, PD-1 and COX-2 biomarkers.
Collapse
|
4
|
Naboulsi R, Cieślak J, Headon D, Jouni A, Negro JJ, Andersson G, Lindgren G. The Enrichment of Specific Hair Follicle-Associated Cell Populations in Plucked Hairs Offers an Opportunity to Study Gene Expression Underlying Hair Traits. Int J Mol Sci 2022; 24:ijms24010561. [PMID: 36614000 PMCID: PMC9820680 DOI: 10.3390/ijms24010561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Gene expression differences can assist in characterizing important underlying genetic mechanisms between different phenotypic traits. However, when population-dense tissues are studied, the signals from scarce populations are diluted. Therefore, appropriately choosing a sample collection method that enriches a particular type of effector cells might yield more specific results. To address this issue, we performed a polyA-selected RNA-seq experiment of domestic horse (Equus ferus caballus) plucked-hair samples and skin biopsies. Then, we layered the horse gene abundance results against cell type-specific marker genes generated from a scRNA-seq supported with spatial mapping of laboratory mouse (Mus musculus) skin to identify the captured populations. The hair-plucking and skin-biopsy sample-collection methods yielded comparable quality and quantity of RNA-seq results. Keratin-related genes, such as KRT84 and KRT75, were among the genes that showed higher abundance in plucked hairs, while genes involved in cellular processes and enzymatic activities, such as MGST1, had higher abundance in skin biopsies. We found an enrichment of hair-follicle keratinocytes in plucked hairs, but detected an enrichment of other populations, including epidermis keratinocytes, in skin biopsies. In mammalian models, biopsies are often the method of choice for a plethora of gene expression studies and to our knowledge, this is a novel study that compares the cell-type enrichment between the non-invasive hair-plucking and the invasive skin-biopsy sample-collection methods. Here, we show that the non-invasive and ethically uncontroversial plucked-hair method is recommended depending on the research question. In conclusion, our study will allow downstream -omics approaches to better understand integumentary conditions in both health and disease in horses as well as other mammals.
Collapse
Affiliation(s)
- Rakan Naboulsi
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
- Correspondence:
| | - Jakub Cieślak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, 60-637 Poznań, Poland
| | - Denis Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Ahmad Jouni
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Juan J. Negro
- Department of Evolutionary Ecology, Doñana Biological Station, CSIC, 41092 Seville, Spain
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
5
|
Kupczyk P, Rykala M, Serek P, Pawlak A, Slowikowski B, Holysz M, Chodaczek G, Madej JP, Ziolkowski P, Niedzwiedz A. The cannabinoid receptors system in horses: Tissue distribution and cellular identification in skin. J Vet Intern Med 2022; 36:1508-1524. [PMID: 35801813 PMCID: PMC9308437 DOI: 10.1111/jvim.16467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) is composed of cannabinoid receptors type 1 (CBR1) and type 2 (CBR2), cannabinoid-based ligands (endogenous chemically synthesized phytocannabinoids), and endogenous enzymes controlling their concentrations. Cannabinoid receptors (CBRs) have been identified in invertebrates and in almost all vertebrate species in the central and peripheral nervous system as well as in immune cells, where they control neuroimmune homeostasis. In humans, rodents, dogs, and cats, CBRs expression has been confirmed in the skin, and their expression and tissue distribution become disordered in pathological conditions. Cannabinoid receptors may be a possible therapeutic target in skin diseases. OBJECTIVES To characterize the distribution and cellular expression of CBRs in the skin of horses under normal conditions. ANIMALS Fifteen healthy horses. METHODS Using full-thickness skin punch biopsy samples, skin-derived primary epidermal keratinocytes and dermal-derived cells, we performed analysis of Cnr1 and Cnr2 genes using real-time PCR and CBR1 and CBR2 protein expression by confocal microscopy and Western blotting. RESULTS Normal equine skin, including equine epidermal keratinocytes and dermal fibroblast-like cells, all exhibited constant gene and protein expression of CBRs. CONCLUSIONS AND CLINICAL IMPORTANCE Our results represent a starting point for developing and translating new veterinary medicine-based pharmacotherapies using ECS as a possible target.
Collapse
Affiliation(s)
- Piotr Kupczyk
- Division of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Rykala
- Department of Internal Medicine and Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Pawel Serek
- Department of Biochemistry and Immunochemistry, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Bartosz Slowikowski
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Karol Marcinkowski Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Holysz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Karol Marcinkowski Poznan University of Medical Sciences, Poznan, Poland
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Lukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Jan P Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Piotr Ziolkowski
- Division of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Artur Niedzwiedz
- Department of Internal Medicine and Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|