1
|
Shields LE, Jennings J, Liu Q, Lee J, Ma W, Blecha F, Miller LC, Sang Y. Cross-Species Genome-Wide Analysis Reveals Molecular and Functional Diversity of the Unconventional Interferon-ω Subtype. Front Immunol 2019; 10:1431. [PMID: 31293589 PMCID: PMC6603160 DOI: 10.3389/fimmu.2019.01431] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
Innate immune interferons (IFNs), particularly type I IFNs, are primary mediators regulating animal antiviral, antitumor, and cell-proliferative activity. These antiviral cytokines have evolved remarkable molecular and functional diversity to confront ever-evolving viral threats and physiological regulation. We have annotated IFN gene families across 110 animal genomes, and showed that IFN genes, after originating in jawed fishes, had several significant evolutionary surges in vertebrate species of amphibians, bats and ungulates, particularly pigs and cattle. For example, pigs have the largest but still expanding type I IFN family consisting of nearly 60 IFN-coding genes that encode seven IFN subtypes including multigene subtypes of IFN-α, -δ, and -ω. Whereas, subtypes such as IFN-α and -β have been widely studied in many species, the unconventional subtypes such as IFN-ω have barely been investigated. We have cross-species defined the IFN evolution, and shown that unconventional IFN subtypes particularly the IFN-ω subtype have evolved several novel features including: (1) being a signature multi-gene subtype expanding primarily in mammals such as bats and ungulates, (2) emerging isoforms that have superior antiviral potency than typical IFN-α, (3) highly cross-species antiviral (but little anti-proliferative) activity exerted in cells of humans and other mammalian species, and (4) demonstrating potential novel molecular and functional properties. This study focused on IFN-ω to investigate the immunogenetic evolution and functional diversity of unconventional IFN subtypes, which may further IFN-based novel antiviral design pertinent to their cross-species high antiviral and novel activities.
Collapse
Affiliation(s)
- Lauren E Shields
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Jordan Jennings
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Qinfang Liu
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jinhwa Lee
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Wenjun Ma
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Frank Blecha
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Laura C Miller
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
2
|
Chen L, Li X, Cheng M, Wang S, Zheng Q, Liu Q. Iso-pencillixanthone A from a marine-derived fungus reverses multidrug resistance in cervical cancer cells through down-regulating P-gp and re-activating apoptosis. RSC Adv 2018; 8:41192-41206. [PMID: 35559314 PMCID: PMC9091570 DOI: 10.1039/c8ra09506j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022] Open
Abstract
The occurrence of multidrug resistance (MDR) is highly associated with the overexpression of ATP-binding cassette (ABC) transporters, among which, P-glycoprotein (P-gp) plays one of the most important roles. Iso-pencillixanthone A (iso-PXA) is a compound isolated from the marine-derived fungus Penicillium oxalicum. No studies on the anti-tumor effect of this compound have been reported, except for a few focusing on its bactericidal properties. In this study, we found iso-PXA could stimulate P-gp ATPase activity and attenuate P-gp expression to increase the intracellular drug concentration in the cervical vincristine (VCR)-resistant cell line HeLa/VCR. Then, it increased ROS generation, depolarized MMP, promoted the release of cytochrome c from mitochondria, and further activated caspase-9, caspase-3 and PARP to induce cell apoptosis effectively through the intrinsic pathway. Caspase-8 medicated cleavage of Bid into the truncated form tBid partially initiated the mitochondrial apoptotic events. The elevation of the Bax/Bcl-2 ratio, the accumulation of FBW7 and the degradation of Mcl-1 accelerated the iso-PXA induced apoptotic process. The HeLa/VCR cell xenograft model again confirmed that iso-PXA had much better efficacy than vincristine in vivo. Taken together, these findings demonstrated that iso-PXA elicited remarkable anti-tumor and anti-MDR activity through inhibiting P-gp expression and function and re-activating the intrinsic apoptosis pathway in vitro and in vivo, suggesting it as a potential chemotherapeutic lead compound in the treatment of cervical MDR cancers.
Collapse
Affiliation(s)
- Li Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University Fuzhou 350002 P. R. China
| | - Xinxin Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University Fuzhou 350002 P. R. China
| | - Miaomiao Cheng
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University Fuzhou 350002 P. R. China
| | - Siyuan Wang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University Fuzhou 350002 P. R. China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital Fuzhou 350014 P. R. China +86-591-8366-0063
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital Fuzhou 350014 P. R. China +86-591-8366-0063
| |
Collapse
|
3
|
Production of biologically active feline interferon beta in insect larvae using a recombinant baculovirus. 3 Biotech 2018; 8:341. [PMID: 30073126 DOI: 10.1007/s13205-018-1369-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022] Open
Abstract
Feline interferon beta is a cytokine that belongs to the type I IFN family, with antitumor, antiviral and immunomodulatory functions. In this work, recombinant feline interferon beta (rFeIFNβ) was expressed in insect larvae that constitute important agronomic plagues. rFeIFNβ accumulated in the hemolymph of Spodoptera frugiperda larvae infected with recombinant baculovirus and was purified by Blue-Sepharose chromatography directly from larval homogenates on day 4 post-infection. rFeIFNβ was recovered after purification with a specific activity of 1 × 106 IU mg-1. By this method, we obtained 8.9 × 104 IU of purified rFeIFNβ per larva. The product was biologically active in vitro, with an antiviral activity of 9.5 × 104 IU mL-1, as well as a potent antitumor activity comparable to that of the commercial FeIFNω. The glycosylation of rFeIFNβ was confirmed by peptide-N-glycosidase F digestion. Our findings provide a cost-effective platform for large-scale rFeIFNβ production in laboratory research or veterinary medicine applications.
Collapse
|
4
|
Liang W, Cui J, Zhang K, Xi H, Cai A, Li J, Gao Y, Hu C, Liu Y, Lu Y, Wang N, Wu X, Wei B, Chen L. Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer. Oncotarget 2017; 8:109094-109106. [PMID: 29312593 PMCID: PMC5752506 DOI: 10.18632/oncotarget.22618] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/26/2017] [Indexed: 12/21/2022] Open
Abstract
Colon cancer is the third most common malignancy worldwide, and chemotherapy is a widely used strategy in clinical therapy. Chemotherapy-resistant of colon cancer is the main cause of recurrence and progression. Novel drugs with efficacy and safety in treating colon cancer are urgently needed. Shikonin, a naphthoquinone derived from the roots of the herbal plant Lithospermum erythrorhizon, has been determined to be a potent anti-tumor agent. The aim of the present study was to detect the underlying anti-tumor mechanism of shikonin in colon cancer. We found that shikonin suppressed the growth of colon cancer cells in a dose-dependent manner in vitro and in vivo. Shikonin induced mitochondria-mediated apoptosis, which was regulated by Bcl-2 family proteins. Shikonin increased the generation of intracellular ROS, which played an upstream role in shikonin-induced apoptosis. Our data indicated that generation of ROS, down-regulated expression of Bcl-2 and Bcl-xL, depolarization of the mitochondrial membrane potential and activation of the caspase cascade were components of the programmed event of shikonin-induced apoptosis in colon cancer cells. In addition, shikonin presented minimal toxicity to non-neoplastic colon cells and no liver injury in xenograft models, showing safety in the control of colon cancer cell growth in vitro and in vivo. Taken together, our findings suggest that shikonin might serve as a potential novel therapeutic drug in the treatment of human colon cancer.
Collapse
Affiliation(s)
- Wenquan Liang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Jianxin Cui
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Kecheng Zhang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Hongqing Xi
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Aizhen Cai
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Jiyang Li
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yunhe Gao
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Chong Hu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yi Liu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yixun Lu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ning Wang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Xiaosong Wu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Bo Wei
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Lin Chen
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
5
|
Arbe MF, Fondello C, Agnetti L, Álvarez GM, Tellado MN, Glikin GC, Finocchiaro LME, Villaverde MS. Inhibition of bioenergetic metabolism by the combination of metformin and 2-deoxyglucose highly decreases viability of feline mammary carcinoma cells. Res Vet Sci 2017; 114:461-468. [PMID: 28802138 DOI: 10.1016/j.rvsc.2017.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023]
Abstract
Feline mammary carcinoma (FMC) is a highly aggressive pathology that has been proposed as an interesting model of breast cancer disease, especially for the hormone refractory subgroup. Recently, cancer cell metabolism has been described as a hallmark of cancer cells. Here, we investigate the effects and mechanism of metabolic modulation by metformin (MET, anti-diabetic drug), 2-deoxyglucose (2DG, hexokinase inhibitor) or a combination of both drugs, MET/2DG on two established FMC cells lines: AlRB (HER2 (3+) and Ki67<5%) and AlRATN (HER2 (-) and Ki67>15%). We found that treatments significantly decreased both FMC cells viability by up to 80%. AlRB resulted more sensitive to 2DG than AlRATN (IC50: 3.15 vs 6.32mM, respectively). The combination of MET/2DG potentiated the effects of the individually added drugs on FMC cells. In addition, MET/2DG caused an increased in intracellular oxidants, autophagic vesicles and completely inhibited colony formation. Conversely, only MET significantly altered plasma membrane integrity, presented late apoptotic/necrotic cells and increased both glucose consumption and lactate concentration. Our results support further studies to investigate the potential use of this metabolic modulation approach in a clinical veterinary setting.
Collapse
Affiliation(s)
- María Florencia Arbe
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Chiara Fondello
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Lucrecia Agnetti
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Gabriel Martín Álvarez
- Cátedra de Química Biológica, Facultad de Veterinaria, Universidad de Buenos, Ciudad Autónoma de Buenos Aires, Argentina
| | - Matías Nicolás Tellado
- Cátedra de Química Biológica, Facultad de Veterinaria, Universidad de Buenos, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gerardo Claudio Glikin
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Liliana María Elena Finocchiaro
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Marcela Solange Villaverde
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina.
| |
Collapse
|
6
|
Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species. Sci Rep 2016; 6:38267. [PMID: 27905569 PMCID: PMC5131274 DOI: 10.1038/srep38267] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
The prognosis of gastric cancer remains poor due to clinical drug resistance. Novel drugs are urgently needed. Shikonin (SHK), a natural naphthoquinone, has been reported to trigger cell death and overcome drug resistance in anti-tumour therapy. In this study, we investigated the effectiveness and molecular mechanisms of SHK in treatment with gastric cancer. In vitro, SHK suppresses proliferation and triggers cell death of gastric cancer cells but leads minor damage to gastric epithelial cells. SHK induces the generation of intracellular reactive oxygen species (ROS), depolarizes the mitochondrial membrane potential (MMP) and ultimately triggers mitochondria-mediated apoptosis. We confirmed that SHK induces apoptosis of gastric cancer cells not only in a caspase-dependent manner which releases Cytochrome C and triggers the caspase cascade, but also in a caspase-independent manner which mediates the nuclear translocation of apoptosis-inducing factor and Endonuclease G. Furthermore, we demonstrated that SHK enhanced the chemotherapeutic sensitivity of 5-fluorouracil and oxaliplatin in vitro and in vivo. Taken together, our data show that SHK may be a novel therapeutic agent in the clinical treatment of gastric cancer.
Collapse
|