1
|
Cheng Y, Wang R, Wu Q, Chen J, Wang A, Wu Z, Sun F, Zhu S. Advancements in Research on Duck Tembusu Virus Infections. Viruses 2024; 16:811. [PMID: 38793692 PMCID: PMC11126125 DOI: 10.3390/v16050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Duck Tembusu Virus (DTMUV) is a pathogen of the Flaviviridae family that causes infections in poultry, leading to significant economic losses in the duck farming industry in recent years. Ducks infected with this virus exhibit clinical symptoms such as decreased egg production and neurological disorders, along with serious consequences such as ovarian hemorrhage, organ enlargement, and necrosis. Variations in morbidity and mortality rates exist across different age groups of ducks. It is worth noting that DTMUV is not limited to ducks alone; it can also spread to other poultry such as chickens and geese, and antibodies related to DTMUV have even been found in duck farm workers, suggesting a potential risk of zoonotic transmission. This article provides a detailed overview of DTMUV research, delving into its genomic characteristics, vaccines, and the interplay with host immune responses. These in-depth research findings contribute to a more comprehensive understanding of the virus's transmission mechanism and pathogenic process, offering crucial scientific support for epidemic prevention and control.
Collapse
Affiliation(s)
- Yuting Cheng
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Ruoheng Wang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Qingguo Wu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Jinying Chen
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Anping Wang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Zhi Wu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Fang Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Shanyuan Zhu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| |
Collapse
|
2
|
Yang J, Zhou P, Wu W, Zhang Q, Chen D, Luo R. Molecular cloning and functional characterization of duck MRE11. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105066. [PMID: 37778443 DOI: 10.1016/j.dci.2023.105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
The human meiotic recombination 11 (MRE11) protein has been recognized as a cytosolic double-stranded DNA sensor that plays a critical role in the induction of type I interferon (IFN). However, the properties and functions of avian MRE11 in the innate immune response are not well understood. In this study, we cloned and characterized the full-length sequence of duck MRE11 (duMRE11) from duck embryo fibroblasts (DEFs) for the first time. The duMRE11 gene encoded a protein of 703 amino acid residues and showed the highest sequence similarity to goose MRE11. Quantitative real-time PCR analysis showed that duMRE11 was ubiquitously expressed in all tissues examined, with particularly high expression levels in the bursa of Fabricius, thymus and spleen. Overexpression of duMRE11 in DEFs led to the activation of IRF1 and NF-κB and the production of IFN-β. Furthermore, knockdown of duMRE11 significantly reduced the activity of the IFN-β promoter in poly(dA:dT)-stimulated or duck enteritis virus (DEV)-infected DEFs. Antiviral analysis showed that duMRE11 effectively suppressed the replication of DEV at different time points after infection. These results indicate that duMRE11 plays an important role in the induction of innate immune responses in ducks.
Collapse
Affiliation(s)
- Jinyue Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Wanrong Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Qingxiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Dong Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.
| |
Collapse
|
3
|
Geng N, Fu J, Lv Z, Li J, Kong Y, Qu L, Guo Z, Zhao J, Zhu L, Wang F, Zhao C, Liu S, Hu Z, Li N. M1 polarization of chicken macrophage HD11 can be activated by duck Tembusu virus via MyD88-NF-κB-mediated signaling pathway. Vet Microbiol 2023; 285:109867. [PMID: 37639898 DOI: 10.1016/j.vetmic.2023.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Duck Tembusu virus (DTMUV) has caused significant economic losses to the global duck industry since its outbreak in 2010. The macrophages act as the key immune cell, and its polarization in different functional states is very important for host's immune responses and microbial infections. Avian macrophages are the main target cells of DTMUV, its polarization induced by DTMUV and the underlying mechanisms were explored in this study. Through quantitative real-time PCR, nitrite assay, and flow cytometry analysis, we found that DTMUV caused severe inflammatory responses in chicken macrophage line HD11 by reprogramming the expression of M1- and M2-associated genes, leading to the polarization of HD11 macrophage to M1-type. In term of mechanism, transcriptomics was performed to analyze the M1-type polarization triggered by DTMUV, it was found that most differential genes were implicated in biological processes, and DTMUV infection significantly activated innate immune signaling pathways, including cytokine-cytokine receptor interaction, MAPK signaling pathway. Moreover, transcription factors NF-κB and AP1 also be activated after viral infection. However, further validation analysis by inhibitors and siRNAs of NF-κB and AP1 showed that NF-κB molecule was essential for DTMUV-induced M1 polarization in HD11 cell, but not AP1. Additionally, the inhibiting assays targeting MyD88 and TRIF molecules were conducted to determine their effect on NF-κB and M1-associated genes upregulated by DTMUV. The results showed that although the inhibition of both MyD88 and TRIF significantly downregulated the mRNA level of NF-κB, but the expression of M1-associated genes such as CD86 was lower in MyD88 inhibition group than in the other group, indicating that the role of MyD88 in mediating M1 polarization induced by DTMUV was more important. Overall, these results demonstrated that DTMUV infection induces M1-type polarization in chicken macrophage HD11 through MyD88-NF-κB signaling pathways. This finding will lay the foundation for further study the pathogenesis of DTMUV, and provide new insights into the prevention and control of this disease.
Collapse
Affiliation(s)
- Ningwei Geng
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Ji Fu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Zehao Lv
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Jing Li
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Yuxin Kong
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Lei Qu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Zhiyun Guo
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Jun Zhao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Liya Zhu
- Animal Husbandry and Veterinary Service Centre of Linshu, Linyi, 276700 Shandong Province, China
| | - Feng Wang
- Taian City Research Center of Animal Disease Control and Prevention, 8 Hushan East Road, Taian City, 271000 Shandong Province, China
| | - Cui Zhao
- Taian City Research Center of Animal Disease Control and Prevention, 8 Hushan East Road, Taian City, 271000 Shandong Province, China
| | - Sidang Liu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Zhiyong Hu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China.
| | - Ning Li
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China.
| |
Collapse
|
4
|
Shao Q, Fu F, Zhu P, Xu M, Wang J, Wang Z, Yan Y, Wang H, Ma J, Cheng Y, Sun J. Pigeon TBK1 is involved in antiviral innate immunity by mediating IFN activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104758. [PMID: 37307868 DOI: 10.1016/j.dci.2023.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/13/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
TANK-binding kinase 1 (TBK1), a noncanonical member of the inhibitor-kappaB kinases (IKKs) family, plays a vital role in regulating type-I interferon (IFN) production in mammals and birds. We cloned pigeon TBK1 (PiTBK1) and conducted bioinformatics analyses to compare the protein homology of TBK1 from different species. Overexpression of PiTBK1 in DF-1 cells induced the activation of IFN-β, and this activation positively correlated with the dosage of transfected PiTBK1 plasmids. In pigeon embryonic fibroblasts (PEFs) cells, it does the same. And the STK and Ubl domain are essential for IFN-β activation. Consistent with the previous results, when PiTBK1 expressed more, NDV replication was lower. Our results suggest that PiTBK1 is an important regulator of IFNs and plays a pivotal role in antiviral innate immunity in pigeon.
Collapse
Affiliation(s)
- Qi Shao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Feiyu Fu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Pei Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Minzhi Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Jie Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Zhaofei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Jingjiao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China.
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China.
| |
Collapse
|
5
|
Liu Z, Liu P, Cui T, Chen X, Wang B, Gao C, Wang Z, Li C, Yang N. Genome-wide identification and functional characterization of inhibitor of nuclear factor-κB (IκB) kinase (IKK) in turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108619. [PMID: 36803778 DOI: 10.1016/j.fsi.2023.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The inhibitor of nuclear factor-κB (IκB) kinase (IKK) is involved in a variety of intracellular cell signaling pathways and is an important component of the NF-κB signaling pathway. IKK genes have been suggested to play important roles in the innate immune response to pathogen infection in both vertebrates and invertebrates. However, little information is available about IKK genes in turbot (Scophthalmus maximus). In this study, six IKK genes were identified including SmIKKα, SmIKKα2, SmIKKβ, SmIKKε, SmIKKγ, and SmTBK1. The IKK genes of turbot showed the highest identity and similarity with Cynoglossus semilaevis. Then, phylogenetic analysis showed that the IKK genes of turbot were most closely related to C. semilaevis. In addition, IKK genes were widely expressed in all the examined tissues. Meanwhile, the expression patterns of IKK genes were investigated by QRT-PCR after Vibrio anguillarum and Aeromonas salmonicida infection. The results showed that IKK genes had varying expression patterns in mucosal tissues after bacteria infection, indicating that they may play key roles in maintaining the integrity of the mucosal barrier. Subsequently, protein and protein interaction (PPI) network analysis showed that most proteins interacting with IKK genes were located in the NF-κB signaling pathway. Finally, the double luciferase report and overexpression experiments showed that SmIKKα/SmIKKα2/SmIKKβ involved in the activation of NF-κB in turbot. In summary, our results suggested that IKK genes of turbot played important roles in the innate immune response of teleost, and provide valuable information for further study of the function of IKK genes.
Collapse
Affiliation(s)
- Zhe Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Peng Liu
- Yantai Marine Economic Research Institute, China
| | - Tong Cui
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuan Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongyi Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Wang D, Huo H, Werid GM, Ibrahim YM, Tang L, Wang Y, Chen H. TBK1 Mediates Innate Antiviral Immune Response against Duck Enteritis Virus. Viruses 2022; 14:1008. [PMID: 35632751 PMCID: PMC9145522 DOI: 10.3390/v14051008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Duck enteritis virus (DEV) can infect several types of waterfowl can cause high mortality and huge economic losses to the global waterfowl industry. Type I interferons (IFN) are important for host defense against virus infection through induction of antiviral effector molecules. TANK-binding kinase 1 (TBK1) is a key kinase required for the induction of type I IFNs; however, the role of TBK1 on DEV infection remains unclear. Here, we observed that the expression levels of TBK1 and IFN-β were upregulated during DEV infection in vivo and in vitro. Thus, the function of TBK1 on DEV infection was determined. The results showed that overexpression of TBK1 reduced DEV infection and knockdown of TBK1 resulted in the increased of DEV infection. Additionally, TBK1 overexpression upregulated the expression of IFN-β and a few interferon-stimulated genes (ISGs), which thus inhibited the synthesis of DEV glycoprotein B. On the other hand, the TBK1 inhibitor Amlexanox down-regulated the expression levels of IFN-β and IRF3. Interestingly, the expression levels of MAVS and GSK-3β were decreased in the cells treated with Amlexanox. Furthermore, overexpression of TBK1 activated the expression of upstream molecules MAVS and GSK-3β. Whereas, the expression of TBK1, IRF3 and IFN-β was inhibited by the GSK-3β inhibitor SB216763. Our findings suggest that DEV-stimulated TBK1 may be involved in defense against DEV infection.
Collapse
Affiliation(s)
- Dongfang Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.W.); (H.H.); (G.M.W.); (Y.M.I.)
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hong Huo
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.W.); (H.H.); (G.M.W.); (Y.M.I.)
| | - Gebremeskel Mamu Werid
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.W.); (H.H.); (G.M.W.); (Y.M.I.)
| | - Yassein M. Ibrahim
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.W.); (H.H.); (G.M.W.); (Y.M.I.)
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.W.); (H.H.); (G.M.W.); (Y.M.I.)
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Science, Chongqing 408599, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.W.); (H.H.); (G.M.W.); (Y.M.I.)
| |
Collapse
|
7
|
Abstract
Birds are important hosts for many RNA viruses, including influenza A virus, Newcastle disease virus, West Nile virus and coronaviruses. Innate defense against RNA viruses in birds involves detection of viral RNA by pattern recognition receptors. Several receptors of different classes are involved, such as endosomal toll-like receptors and cytoplasmic retinoic acid-inducible gene I-like receptors, and their downstream adaptor proteins. The function of these receptors and their antagonism by viruses is well established in mammals; however, this has received less attention in birds. These receptors have been characterized in a few bird species, and the completion of avian genomes will permit study of their evolution. For each receptor, functional work has established ligand specificity and activation by viral infection. Engagement of adaptors, regulation by modulators and the supramolecular organization of proteins required for activation are incompletely understood in both mammals and birds. These receptors bind conserved nucleic acid agonists such as single- or double-stranded RNA and generally show purifying selection, particularly the ligand binding regions. However, in birds, these receptors and adaptors differ between species, and between individuals, suggesting that they are under selection for diversification over time. Avian receptors and signalling pathways, like their mammalian counterparts, are targets for antagonism by a variety of viruses, intent on escape from innate immune responses.
Collapse
|
8
|
New Insights into the Biology of the Emerging Tembusu Virus. Pathogens 2021; 10:pathogens10081010. [PMID: 34451474 PMCID: PMC8398659 DOI: 10.3390/pathogens10081010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Reported for the first time in 1955 in Malaysia, Tembusu virus (TMUV) remained, for a long time, in the shadow of flaviviruses with human health importance such as dengue virus or Japanese encephalitis virus. However, since 2010 and the first large epidemic in duck farms in China, the threat of its emergence on a large scale in Asia or even its spillover into the human population is becoming more and more significant. This review aims to report current knowledge on TMUV from viral particle organization to the development of specific vaccines and therapeutics, with a particular focus on host-virus interactions.
Collapse
|
9
|
Abstract
The disease caused by duck Tembusu virus (DTMUV) is characterized by severe egg-drop in laying ducks. Currently, the disease has spread to most duck-raising areas in China, leading to great economic losses in the duck industry. In the recent years, DTMUV has raised some concerns, because of its expanding host range and increasing pathogenicity, as well as the potential threat to public health. Innate immunity is crucial for defending against invading pathogens in the early stages of infection. Recently, studies on the interaction between DTMUV and host innate immune response have made great progress. In the review, we provide an overview of DTMUV and summarize current advances in our understanding of the interaction between DTMUV and innate immunity, including the host innate immune responses to DTMUV infection through pattern recognition receptors (PRRs), signaling transducer molecules, interferon-stimulated genes (ISGs), and the immune evasion strategies employed by DTMUV. The aim of the review is to gain an in-depth understanding of DTMUV pathogenesis to facilitate future studies.
Collapse
|
10
|
Campbell LK, Magor KE. Pattern Recognition Receptor Signaling and Innate Responses to Influenza A Viruses in the Mallard Duck, Compared to Humans and Chickens. Front Cell Infect Microbiol 2020; 10:209. [PMID: 32477965 PMCID: PMC7236763 DOI: 10.3389/fcimb.2020.00209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
Mallard ducks are a natural host and reservoir of avian Influenza A viruses. While most influenza strains can replicate in mallards, the virus typically does not cause substantial disease in this host. Mallards are often resistant to disease caused by highly pathogenic avian influenza viruses, while the same strains can cause severe infection in humans, chickens, and even other species of ducks, resulting in systemic spread of the virus and even death. The differences in influenza detection and antiviral effectors responsible for limiting damage in the mallards are largely unknown. Domestic mallards have an early and robust innate response to infection that seems to limit replication and clear highly pathogenic strains. The regulation and timing of the response to influenza also seems to circumvent damage done by a prolonged or dysregulated immune response. Rapid initiation of innate immune responses depends on viral recognition by pattern recognition receptors (PRRs) expressed in tissues where the virus replicates. RIG-like receptors (RLRs), Toll-like receptors (TLRs), and Nod-like receptors (NLRs) are all important influenza sensors in mammals during infection. Ducks utilize many of the same PRRs to detect influenza, namely RIG-I, TLR7, and TLR3 and their downstream adaptors. Ducks also express many of the same signal transduction proteins including TBK1, TRIF, and TRAF3. Some antiviral effectors expressed downstream of these signaling pathways inhibit influenza replication in ducks. In this review, we summarize the recent advances in our understanding of influenza recognition and response through duck PRRs and their adaptors. We compare basal tissue expression and regulation of these signaling components in birds, to better understand what contributes to influenza resistance in the duck.
Collapse
Affiliation(s)
- Lee K Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Li N, Jiang S, Zhao J, Yang Y, Deng K, Wei L, Cai Y, Li B, Liu S. Molecular identification of duck DDX3X and its potential role in response to Tembusu virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103599. [PMID: 31899305 DOI: 10.1016/j.dci.2019.103599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
ATP-dependent DEAD (Asp-Glu-Ala-Asp)-box RNA helicases not only regulate RNA metabolism, but also are involved in host antiviral innate immune responses. It is important to investigate the orthologs of this protein family to broaden our understanding of innate immunity and promote protective strategies against viral infections in ducks. In the current study, duck DDX3X (duDDX3X) was first cloned, which consists of 1959 bp encoding a protein of 652 amino acids. duDDX3X has the typical structure of this family, including nine motifs, DEAD and HELICc domains. The amino acid sequence of duDDX3X shares a high similarity with the DDX3Xs of avian and mammalian. Quantitative real-time PCR indicated that duDDX3X was ubiquitously expressed in nearly all tissues. Overexpression of duDDX3X could activate interferon (IFN)-β and enhance the RIG-I-induced IFN-β yield in duck embryo fibroblast cells. However, duDDX3X had no significant effect on the expression of proinflammatory cytokines such as IL-1β, IL-6, and CXCL-8. Tembusu virus (TMUV) infection significantly downregulated duDDX3X. Overexpression and siRNA interference studies showed that duDDX3X inhibited the replication of TMUV through IFN-β at the early stages of infection. Collectively, our results indicated that duDDX3X could positively modulate type I interferon and play an essential role in response to TMUV infection. This study will contribute to a better understanding of duDDX3X in the innate immune system of ducks and lay a solid foundation for further studies of duDDX3X in antiviral immunity.
Collapse
Affiliation(s)
- Ning Li
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Shengnan Jiang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Jun Zhao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Yudong Yang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Kai Deng
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Liangmeng Wei
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Yumei Cai
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Baoquan Li
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China.
| | - Sidang Liu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China.
| |
Collapse
|