1
|
Rantasalo V, Laukka D, Nikulainen V, Jalkanen J, Gunn J, Kiviniemi T, Hakovirta H. Association between aortic calcification and cytokine levels in patients with peripheral artery disease. Clin Transl Sci 2024; 17:e70036. [PMID: 39344403 PMCID: PMC11440032 DOI: 10.1111/cts.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
Aortic calcification-a marker of advanced atherosclerosis in large arteries-associates with cardiovascular mortality and morbidity. Little is known about the soluble inflamJarmatory profiles involved in large artery atherosclerosis. We investigated the correlation between aortic calcification in the abdominal aorta and cytokine levels in a cohort of peripheral artery disease patients. Aortic calcification index was measured from computed tomography exams and circulating cytokine levels were analyzed from blood serum samples of 156 consecutive patients prior to invasive treatment of peripheral artery disease. The study included 156 patients (mean age 70.7 years, 64 (41.0%) women). The mean ankle-brachial index (ABI) was 0.64 and the mean aortic calcification index (ACI) was 52.3. ACI was associated with cytokines cutaneous T-cell-attracting chemokine CTACK (β 23.08, SE 5.22, p < 0.001) and monokine induced by gamma-interferon MIG (β 9.40, SE 2.82, p 0.001) in univariate linear regression. After adjustment with cardiovascular risk factors, CTACK and MIG were independently associated with ACI, β 17.9 (SE 5.22, p < 0.001) for CTACK and β 6.80 (SE 3.33, p 0.043) for MIG. CTACK was significantly higher in the patients representing the highest ACI tertile (highest vs. middle, 7.53 vs. 7.34 Tukeys HSD p-value 0.023 and highest vs. lowest tertile 7.53 vs. 7.29, Tukeys HSD p-value 0.002). MIG was significantly higher in the highest tertile versus lowest (7.65 vs. 7.30, Tukeys HSD p-value 0.027). Cytokines CTACK and MIG are associated with higher ACI, suggesting that CTACK and MIG reflect atherosclerotic disease burden of the aorta. This might further suggest the possible association with other cardiovascular morbidities.
Collapse
Affiliation(s)
- Ville Rantasalo
- Department of Surgery, University of Turku, Turku, Finland
- Division of Gastroenterology and Urology, Department of Vascular Surgery, Turku University Hospital, Turku, Finland
| | - Dan Laukka
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Veikko Nikulainen
- Division of Gastroenterology and Urology, Department of Vascular Surgery, Turku University Hospital, Turku, Finland
| | - Juho Jalkanen
- Division of Gastroenterology and Urology, Department of Vascular Surgery, Turku University Hospital, Turku, Finland
| | - Jarmo Gunn
- Department of Surgery, University of Turku, Turku, Finland
| | | | - Harri Hakovirta
- Department of Surgery, University of Turku, Turku, Finland
- Satasairaala, Pori, Finland
- King Faisal Specialist Hospital and Research Center, Medina, Saudi Arabia
| |
Collapse
|
2
|
Găman MA, Srichawla BS, Chen YF, Roy P, Dhali A, Nahian A, Manan MR, Kipkorir V, Suteja RC, Simhachalam Kutikuppala LV, Găman AM, Diaconu CC. Overview of dyslipidemia and metabolic syndrome in myeloproliferative neoplasms. World J Clin Oncol 2024; 15:717-729. [PMID: 38946827 PMCID: PMC11212607 DOI: 10.5306/wjco.v15.i6.717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/05/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs) occur due to the abnormal proliferation of one or more terminal myeloid cell lines in peripheral blood. Subjects suffering from MPNs display a high burden of cardiovascular risk factors, and thrombotic events are often the cause of death in this population of patients. Herein, we provide a brief overview of dyslipidemia and metabolic syndrome and their epidemiology in MPNs and examine the common molecular mechanisms between dyslipidemia, metabolic syndrome, and MPNs, with a special focus on cardiovascular risk, atherosclerosis, and thrombotic events. Furthermore, we investigate the impact of dyslipidemia and metabolic syndrome on the occurrence and survival of thrombosis in MPN patients, as well as the management of dyslipidemia in MPNs, and the impact of MPN treatment on serum lipid concentrations, particularly as side/adverse effects reported in the context of clinical trials.
Collapse
Affiliation(s)
- Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest 022328, Romania
- Department of Cellular and Molecular Pathology, Stefan S Nicolau Institute of Virology, Romanian Academy, Bucharest 030304, Romania
| | - Bahadar Singh Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Yong-Feng Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, West Bengal 734012, India
| | - Arkadeep Dhali
- Academic Department of Gastroenterology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S5 7AU, United Kingdom
| | - Ahmed Nahian
- Lecom at Seton Hill, Greensburg, PA 15601, United States
| | | | - Vincent Kipkorir
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi 00100, Kenya
| | | | | | - Amelia Maria Găman
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
- Clinic of Hematology, Filantropia City Hospital, Craiova 200143, Romania
| | - Camelia Cristina Diaconu
- Department of Internal Medicine, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 050474, Romania
- Internal Medicine Clinic, Clinical Emergency Hospital of Bucharest, Bucharest 105402, Romania
| |
Collapse
|
3
|
Jalili Shahri J, Saeed Modaghegh MH, Tanzadehpanah H, Ebrahimnejad M, Mahaki H. TH1/TH2 Cytokine Profile and Their Relationship with Hematological Parameters in Patients with Acute Limb Ischemia. Rep Biochem Mol Biol 2024; 13:31-39. [PMID: 39582827 PMCID: PMC11580126 DOI: 10.61186/rbmb.13.1.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/01/2024] [Indexed: 11/26/2024]
Abstract
Background The progression of acute limb ischemia (ALI) is being significantly influenced by changes in immune system function. The study aimed to determine the dominant immune cell responses (Th1 or Th2) in ALI patients by measuring serum levels of IL-4, IL-12, and IFN-γ. Previous studies indicate altered cytokine levels in cerebral ischemia, but there is no prior research on these cytokines in ALI patients. Methods This study involved 34 patients with ALI and 34 healthy controls. Blood samples were analyzed for hematological factors such as erythrocyte sedimentation rate (ESR), white blood cell (WBC) count, red blood cell (RBC) count, platelet (Plt) count, hemoglobin (Hb), and hematocrit (HCT). The levels of serum cytokines IL-4, IL-12, and IFN-γ were measured in both patients and control subjects using enzyme-linked immunosorbent assay (ELISA). The statistical analyses were conducted using SPSS and GraphPad Prism. Results The results showed that serum levels of IL-4 in ALI patients did not significantly differ from those in control groups. Acute limb ischemia exhibited significantly elevated levels of IL-12 and IFN-γ compared to healthy individuals. In addition, no correlation between the production of cytokines and the hematological parameters was found. Conclusions Th1 responses are believed to play a role in the pathogenesis of ALI, but further research is needed to fully understand their exact role.
Collapse
Affiliation(s)
- Jamal Jalili Shahri
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Seligowski AV, Misganaw B, Duffy LA, Ressler KJ, Guffanti G. Leveraging Large-Scale Genetics of PTSD and Cardiovascular Disease to Demonstrate Robust Shared Risk and Improve Risk Prediction Accuracy. Am J Psychiatry 2022; 179:814-823. [PMID: 36069022 PMCID: PMC9633348 DOI: 10.1176/appi.ajp.21111113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Individuals with posttraumatic stress disorder (PTSD) are significantly more likely to be diagnosed with cardiovascular disease (CVD) (e.g., myocardial infarction, stroke). The evidence for this link is so compelling that the National Institutes of Health convened a working group to determine gaps in the literature, including the need for large-scale genomic studies to identify shared genetic risk. The aim of the present study was to address some of these gaps by utilizing PTSD and CVD genome-wide association study (GWAS) summary statistics in a large biobank sample to determine the shared genetic risk of PTSD and CVD. METHODS A large health care biobank data set was used (N=36,412), combined with GWAS summary statistics from publicly available large-scale PTSD and CVD studies. Disease phenotypes (e.g., PTSD) were collected from electronic health records. De-identified genetic data from the biobank were genotyped using Illumina SNP array. Summary statistics data sets were processed with the following quality-control criteria: 1) SNP heritability h2 >0.05, 2) compute z-statistics (z=beta/SE or z=log(OR)/SE), 3) filter nonvariable SNPs (0 RESULTS Significant genetic correlations were found between PTSD and CVD (rG=0.24, SE=0.06), and Mendelian randomization analyses indicated a potential causal link from PTSD to hypertension (β=0.20, SE=0.04), but not the reverse. PTSD summary statistics significantly predicted PTSD diagnostic status (R2=0.27), and this was significantly improved by incorporating summary statistics from CVD and major depressive disorder (R2=1.30). Further, pathway enrichment analyses indicated that genetic variants involved in shared PTSD-CVD risk included those involved in postsynaptic structure, synapse organization, and interleukin-7-mediated signaling pathways. CONCLUSIONS The results from this study suggest that PTSD and CVD may share genetic risk. Further, these results implicate PTSD as a risk factor leading to the development of hypertension and coronary artery disease. Additional research is needed to determine the clinical utility of these findings.
Collapse
Affiliation(s)
- Antonia V. Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Burook Misganaw
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | | | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Guia Guffanti
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| |
Collapse
|
5
|
Elevated G-CSF, IL8, and HGF in patients with definite Meniere's disease may indicate the role of NET formation in triggering autoimmunity and autoinflammation. Sci Rep 2022; 12:16309. [PMID: 36175465 PMCID: PMC9522806 DOI: 10.1038/s41598-022-20774-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/19/2022] [Indexed: 11/08/2022] Open
Abstract
The etiology and mechanism causing Meniere’s disease (MD) are not understood. The present study investigated the possible molecular mechanism of autoimmunity and autoinflammation associated with MD. Thirty-eight patients with definite MD and 39 normal volunteers were recruited, and 48 human cytokines/chemokines were quantified. In patients with MD pure tone audiograms, tympanograms and standard blood tests were performed. The mean hearing loss in the worse ear was 44.1 dB nHL. Compared to the referents, the concentrations of TNFα, IL1α, IL8, CTACK, MIP1α, MIP1β, G-CSF, and HGF in the sera of patients with MD were significantly elevated, while those of TRAIL and PDGFBB were significantly decreased. The area under the receiver operating characteristic curve (AUC) showed that G-CSF, MIP1α, and IL8 were above 0.8 and could be used to diagnose MD (p < 0.01), and the AUCs of CTACK and HGF were above 0.7 and acceptable to discriminate the MD group from the control group (p < 0.01). The revised AUCs (1 − AUC) of TRAIL and PDGFBB were above 0.7 and could also be used in the diagnosis of MD (p < 0.01). The linear regression showed significant correlations between MIP1α and GCSF, between IL2Rα and GCSF, between IL8 and HGF, between MIP1α and IL8, and between SCF and CTACK; there was a marginal linear association between IP10 and MIP1α. Linear regression also showed that there were significant age-related correlations of CTACK and MIG expression in the MD group (p < 0.01, ANOVA) but not in the control group. We hypothesize that G-CSF, IL8, and HGF, which are involved in the development of neutrophil extracellular traps (NETs) and through various mechanisms influence the functions of macrophages, lymphocytes, and dendritic cells, among others, are key players in the development of EH and MD and could be useful in elucidating the pathophysiological mechanisms leading to MD. Biomarkers identified in the present study may suggest that both autoimmune and autoinflammatory mechanisms are involved in MD. In the future, it will be valuable to develop a cost-effective method to detect G-CSF, IL8, HGF, CTACK, MIP1α, TRAIL, and PDGFBB in the serum of patient that have diagnostic relevance.
Collapse
|
6
|
Azari ZD, Aljubran F, Nothnick WB. Inflammatory MicroRNAs and the Pathophysiology of Endometriosis and Atherosclerosis: Common Pathways and Future Directions Towards Elucidating the Relationship. Reprod Sci 2022; 29:2089-2104. [PMID: 35476352 DOI: 10.1007/s43032-022-00955-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Emerging data indicates an association between endometriosis and subclinical atherosclerosis, with women with endometriosis at a higher risk for cardiovascular disease later in life. Inflammation is proposed to play a central role in the pathophysiology of both diseases and elevated levels of systemic pro-inflammatory cytokines including macrophage migration inhibitory factor (MIF), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) are well documented. However, a thorough understanding on the mediators and mechanisms which contribute to altered cytokine expression in both diseases remain poorly understood. MicroRNAs (miRNAs) are important post-transcriptional regulators of inflammatory pathways and numerous studies have reported altered circulating levels of miRNAs in both endometriosis and atherosclerosis. Potential contribution of miRNA-mediated inflammatory cascades common to the pathophysiology of both diseases has not been evaluated but could offer insight into common pathways and early manifestation relevant to both diseases which may help understand cause and effect. In this review, we discuss and summarize differentially expressed inflammatory circulating miRNAs in endometriosis subjects, compare this profile to that of circulating levels associated with atherosclerosis when possible, and then discuss mechanistic studies focusing on these miRNAs in relevant cell, tissue, and animal models. We conclude by discussing the potential utility of targeting the relevant miRNAs in the MIF-IL-6-TNF-α pathway as therapeutic options and offer insight into future studies which will help us better understand not only the role of these miRNAs in the pathophysiology of both endometriosis and atherosclerosis but also commonality between both diseases.
Collapse
Affiliation(s)
- Zubeen D Azari
- Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Fatimah Aljubran
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Warren B Nothnick
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Obstetrics and Gynecology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Center for Reproductive Sciences, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
7
|
Ryan TE, Kim K, Scali ST, Berceli SA, Thome T, Salyers ZR, O'Malley KA, Green TD, Karnekar R, Fisher‐Wellman KH, Yamaguchi DJ, McClung JM. Interventional- and amputation-stage muscle proteomes in the chronically threatened ischemic limb. Clin Transl Med 2022; 12:e658. [PMID: 35073463 PMCID: PMC8785983 DOI: 10.1002/ctm2.658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite improved surgical approaches for chronic limb-threatening ischemia (CLTI), amputation rates remain high and contributing tissue-level factors remain unknown. The purpose of this study was twofold: (1) to identify differences between the healthy adult and CLTI limb muscle proteome, and (2) to identify differences in the limb muscle proteome of CLTI patients prior to surgical intervention or at the time of amputation. METHODS AND RESULTS Gastrocnemius muscle was collected from non-ischemic controls (n = 19) and either pre-interventional surgery (n = 10) or at amputation outcome (n = 29) CLTI patients. All samples were subjected to isobaric tandem-mass-tag-assisted proteomics. The mitochondrion was the primary classification of downregulated proteins (> 70%) in CLTI limb muscles and paralleled robust functional mitochondrial impairment. Upregulated proteins (> 38%) were largely from the extracellular matrix. Across the two independent sites, 39 proteins were downregulated and 12 upregulated uniformly. Pre-interventional CLTI muscles revealed a robust upregulation of mitochondrial proteins but modest functional impairments in fatty acid oxidation as compared with controls. Comparison of pre-intervention and amputation CLTI limb muscles revealed mitochondrial proteome and functional deficits similar to that between amputation and non-ischemic controls. Interestingly, these observed changes occurred despite 62% of the amputation CLTI patients having undergone a prior surgical intervention. CONCLUSIONS The CLTI proteome supports failing mitochondria as a phenotype that is unique to amputation outcomes. The signature of pre-intervention CLTI muscle reveals stable mitochondrial protein abundance that is insufficient to uniformly prevent functional impairments. Taken together, these findings support the need for future longitudinal investigations aimed to determine whether mitochondrial failure is causally involved in amputation outcomes from CLTI.
Collapse
Affiliation(s)
- Terence E. Ryan
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Center for Exercise ScienceUniversity of FloridaGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Kyoungrae Kim
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Salvatore T. Scali
- Division of Vascular Surgery and Endovascular TherapyUniversity of FloridaGainesvilleFloridaUSA
- Malcom Randall Veteran Affairs Medical CenterGainesvilleFloridaUSA
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular TherapyUniversity of FloridaGainesvilleFloridaUSA
- Malcom Randall Veteran Affairs Medical CenterGainesvilleFloridaUSA
| | - Trace Thome
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Zachary R. Salyers
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Kerri A. O'Malley
- Division of Vascular Surgery and Endovascular TherapyUniversity of FloridaGainesvilleFloridaUSA
- Malcom Randall Veteran Affairs Medical CenterGainesvilleFloridaUSA
| | - Thomas D. Green
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
- East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Reema Karnekar
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
- East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Kelsey H. Fisher‐Wellman
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
- East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Dean J. Yamaguchi
- Department of Cardiovascular ScienceEast Carolina UniversityGreenvilleNorth CarolinaUSA
- Division of SurgeryEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Joseph M. McClung
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
- East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNorth CarolinaUSA
- Department of Cardiovascular ScienceEast Carolina UniversityGreenvilleNorth CarolinaUSA
| |
Collapse
|
8
|
Abstract
A diagnosis of cancer is a major life stressor that can affect the physiological, psychological and physical state of the person concerned. Fatigue is a particularly common and troubling symptom that has a negative impact on quality of life throughout all phases of treatment and stages of the illness. The aim of this review is to provide background information on cancer-related fatigue. This review discusses cancer-related fatigue (CRF) in terms of the definition, prevalence, risk factors, aetiology, and the measurement scales used. The differences between definitions of symptoms and relevant theories will be explored and discussed to help explain the variety of instruments used in its measurement. The prevalence of fatigue will be assessed by looking critically at the evidence of fatigue and the factors that affect it. Potential treatment and management strategies for CRF will also be discussed. Finally, there will be an overview of the instruments used to measure fatigue. This review also provides important evidence for measuring and managing CRF that can help nurses to understand fatigue among patients with cancer. Assessing CRF should be routinely undertaken in clinical settings to help identify the proper interventions, treatments and management to reduce fatigue among cancer patients.
Collapse
Affiliation(s)
- Mohammed Al Maqbali
- Research Assistant, School of Applied Social and Policy Sciences, Ulster University, Magee Campus, Derry-Londonderry
| |
Collapse
|
9
|
Virtanen J, Varpela M, Biancari F, Jalkanen J, Hakovirta H. Association between anatomical distribution of symptomatic peripheral artery disease and cerebrovascular disease. Vascular 2020; 28:295-300. [PMID: 31980011 DOI: 10.1177/1708538119893825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIM Peripheral arterial disease is frequently associated with significant atherosclerosis of other vascular beds. The aim of the present study was to investigate a possible association between peripheral arterial disease segment-specific disease burden and cerebrovascular disease. METHODS Two-hundred and twenty-six patients with clinically symptomatic peripheral arterial disease from the prospective PureASO registry were followed up after revascularization. The breadth of peripheral arterial disease was quantified at the time patients entered the study. The segment-specific peripheral arterial disease burden was correlated to cerebrovascular disease and imaging findings during a five-year follow-up. RESULTS At five years, cerebrovascular disease-free survival after lower limb revascularization was 31%. Patients with peripheral arterial disease involving the crural arteries had significantly more ischemic degenerative changes at brain imaging (p = 0.031), whereas patients with aorto-iliac and femoropopliteal segment peripheral arterial disease had more significant (>50% uni- or bilaterally) internal carotid artery stenosis compared to patients with crural peripheral arterial disease (p = 0.006). According to Cox regression analyses, crural arteries burden was associated with a significantly increased risk of mortality (adjusted HR 2.07, CI 95% 1.12-3.28, p = 0.021) and cerebrovascular events (adjusted HR 1.97, CI 95% 1.19-3.26, p = 0.008). CONCLUSIONS Present results suggest that atherosclerosis burden at different lower limb artery segments is associated with defined cerebrovascular disease. This further suggests that risk factors and pathophysiological mechanisms are congruent across particular vascular beds.
Collapse
Affiliation(s)
- Juha Virtanen
- Department of Vascular Surgery, Turku University Hospital, Turku, Finland.,University of Turku, Turku, Finland
| | - Markus Varpela
- Department of Vascular Surgery, Turku University Hospital, Turku, Finland.,University of Turku, Turku, Finland
| | - Fausto Biancari
- Heart Center, Turku University Hospital, Turku, Finland.,Department of Surgery, University of Turku, Turku, Finland.,Department of Surgery, University of Oulu, Oulu, Finland
| | - Juho Jalkanen
- Department of Vascular Surgery, Turku University Hospital, Turku, Finland.,University of Turku, Turku, Finland
| | - Harri Hakovirta
- Department of Vascular Surgery, Turku University Hospital, Turku, Finland.,University of Turku, Turku, Finland
| |
Collapse
|