1
|
Kong WY, Soderholm A, Brooks AJ, Gonzalez Cruz JL, Wells JW. Harnessing cytokine immunocomplexes and cytokine fusion proteins for cancer Therapy: Mechanisms and clinical potential. Cancer Treat Rev 2025; 136:102937. [PMID: 40233680 DOI: 10.1016/j.ctrv.2025.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Cytokines are pivotal regulators of cellular functions and immune responses, making them highly promising targets for cancer immunotherapy. Despite their widespread clinical application, the effectiveness of cytokine immunotherapy is often hampered by their pleiotropic effects, short half-lives, uneven biodistribution, and severe side effects at high dosages. Recent advancements in cytokine biology have led to the development of cytokine-antibody immunocomplexes and cytokine fusion proteins, offering a new paradigm in cancer treatments. These innovations foster the ability of cytokines to selectively activate specific cancer-targeting immune cell populations, such as CD8 T cells and NK cells, effectively inhibiting tumour progression. Furthermore, both therapeutic approaches can mitigate systemic toxicities and prolong the biological activity of cytokines in the body. This review delves into the recent advancements of cytokine immunocomplexes and cytokine fusion proteins, with a particular focus on interleukin-2 (IL-2), IL-7 and IL-15, which are in clinical/preclinical development. Moreover, we discuss the therapeutic benefits of these approaches observed in recent preclinical and clinical studies, along with the challenges that must be addressed to fully unlock their potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Yang Kong
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amelia Soderholm
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J Brooks
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia; School of Science & Technology, University of New England, Armidale, New South Wales, Australia
| | - Jazmina L Gonzalez Cruz
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James W Wells
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia; Dermatology Research Centre, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Tomala J, Cao SD, Spangler JB. Engineering Anticytokine Antibodies for Immune Modulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:225-234. [PMID: 38166248 DOI: 10.4049/jimmunol.2300467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 01/04/2024]
Abstract
The delicate balance of immune homeostasis is regulated by the interactions between cytokines and their cognate cell surface signaling receptors. There is intensive interest in harnessing cytokines as drugs for diseases such as cancer and autoimmune disorders. However, the multifarious and often contradictory activities of cytokines, coupled with their short serum half-lives, limit clinical performance and result in dangerous toxicities. There is thus growing emphasis on manipulating natural cytokines to enhance their selectivity, safety, and durability through various strategies. One strategy that has gained traction in recent years is the development of anticytokine Abs that not only extend the circulation half-life of cytokines but also specifically bias their immune activities through multilayered molecular mechanisms. Although Abs are notorious for their antagonistic activities, this review focuses on anticytokine Abs that selectively agonize the activity of the target protein. This approach has potential to help realize the clinical promise of cytokine-based therapies.
Collapse
Affiliation(s)
- Jakub Tomala
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University School of Engineering, Baltimore, MD
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shanelle D Cao
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University School of Engineering, Baltimore, MD
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University School of Engineering, Baltimore, MD
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
3
|
Intratumoral IL-28B Gene Delivery Elicits Antitumor Effects by Remodeling of the Tumor Microenvironment in H22-Bearing Mice. J Immunol Res 2022; 2022:1345971. [PMID: 35935577 PMCID: PMC9352479 DOI: 10.1155/2022/1345971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
IL-28B, belonging to type III interferons (IFN-λs), exhibits a potent antitumor activity with reduced regulated T cells (Tregs) population, yet the effect of IL-28B on the tumor microenvironment (TME) and if IL-28B can downregulate Tregs directly in vitro are still unknown. In this study, we investigated the effects of IL-28B on Tregs in the spleen and TME in H22 tumor-bearing mice and verified the downregulation of IL-28B on Tregs in vitro. We found that rAd-mIL-28B significantly inhibited tumor growth and reduced the frequency of splenic CD4+Foxp3+ T cells. The levels of CXCL13, ICAM-1, MCP-5, and IL-7 in the serum, and the levels of IL-15 and sFasL in the tumor tissue decreased significantly after rAd-mIL-28B treatment relative to rAd-EGFP. Furthermore, the percentage of CD8+ cells in the TME was significantly increased in the rAd-mIL-28B group compared with the untreated group. In vitro, splenocytes were stimulated with anti-CD3/CD28 and IL-2 in the presence of TGF-β with or without IL-28B for three days and followed by flow cytometric, RT-PCR, and IL-10 production analysis. The results showed that IL-28B significantly reduced the proportion of induced Foxp3+ cells. It demonstrated that IL-28B may be used as a promising immunotherapy strategy against cancer.
Collapse
|
4
|
Chen D, Tang TX, Deng H, Yang XP, Tang ZH. Interleukin-7 Biology and Its Effects on Immune Cells: Mediator of Generation, Differentiation, Survival, and Homeostasis. Front Immunol 2021; 12:747324. [PMID: 34925323 PMCID: PMC8674869 DOI: 10.3389/fimmu.2021.747324] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Interleukin-7 (IL-7), a molecule known for its growth-promoting effects on progenitors of B cells, remains one of the most extensively studied cytokines. It plays a vital role in health maintenance and disease prevention, and the congenital deficiency of IL-7 signaling leads to profound immunodeficiency. IL-7 contributes to host defense by regulating the development and homeostasis of immune cells, including T lymphocytes, B lymphocytes, and natural killer (NK) cells. Clinical trials of recombinant IL-7 have demonstrated safety and potent immune reconstitution effects. In this article, we discuss IL-7 and its functions in immune cell development, drawing on a substantial body of knowledge regarding the biology of IL-7. We aim to answer some remaining questions about IL-7, providing insights essential for designing new strategies of immune intervention.
Collapse
Affiliation(s)
- Deng Chen
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Xuan Tang
- Class 1901, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hai Deng
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Tang
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|