1
|
Louise V, Machado BAA, Pontes WM, Menezes TP, Dias FCR, Ervilhas LOG, Pinto KMDC, Talvani A. Theracurmin Modulates Cardiac Inflammation in Experimental Model of Trypanosoma cruzi Infection. Trop Med Infect Dis 2023; 8:343. [PMID: 37505639 PMCID: PMC10384540 DOI: 10.3390/tropicalmed8070343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Theracurmin is a nanoparticle formulation derived from curcumin, a bioactive compound known for its antioxidant and anti-inflammatory properties. Trypanosoma cruzi, the etiological agent of Chagas disease, triggers an intense inflammatory response in mammals and also causes severe tissue damage. To evaluate the immunomodulatory and antiparasitic effects of Theracurmin, Swiss mice were experimentally infected with 103 trypomastigote forms of the Colombian strain of T. cruzi and submitted to daily therapy with 30 mg/kg of Theracurmin. In addition, daily benznidazole therapy (100 mg/kg) was performed as a positive control. We evaluated the systemic and tissue parasitism, the survival and the body mass rate, the release of inflammatory mediators (TNF, IL-6, IL-15, CCL2 and creatine kinase) and the tissue inflammation at day 30 post-infection. Theracurmin therapy reduced the parasitemia curve without altering the animals' survival rate, and it protected mice from losing body mass. Theracurmin also reduced CCL2 in cardiac tissue, IL-15 in cardiac and skeletal tissue, and plasma CK. Even without effects on TNF and IL-6 production and tissue amastigote nests, Theracurmin reduced the leukocyte infiltrate in both evaluated tissues, even in the case of more effective results observed to the benznidazole treatment. Our data suggest Theracurmin has an immunomodulatory (CCL2, IL-15, CK and tissue leukocyte infiltration) and a trypanocidal effect (on circulating parasites) during experimental infection triggered by the Colombian strain of T. cruzi. Further investigations are necessary to comprehend the Theracurmin role performed in combination with benznidazole or other potential anti-T. cruzi chemical compounds.
Collapse
Affiliation(s)
- Vitória Louise
- Health and Nutrition Post-Graduate Program, Federal University of Ouro Preto, Ouro Preto 35402-145, Minas Gerais, Brazil
| | | | - Washington Martins Pontes
- Health and Nutrition Post-Graduate Program, Federal University of Ouro Preto, Ouro Preto 35402-145, Minas Gerais, Brazil
| | - Tatiana Prata Menezes
- Health and Nutrition Post-Graduate Program, Federal University of Ouro Preto, Ouro Preto 35402-145, Minas Gerais, Brazil
| | | | | | | | - André Talvani
- Health and Nutrition Post-Graduate Program, Federal University of Ouro Preto, Ouro Preto 35402-145, Minas Gerais, Brazil
- Infectology and Tropical Medicine Post-Graduate Program, Federal University of Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| |
Collapse
|
2
|
da Silva-Gomes NL, Ruivo LADS, Moreira C, Meuser-Batista M, da Silva CF, Batista DDGJ, Fragoso S, de Oliveira GM, Soeiro MDNC, Moreira OC. Overexpression of TcNTPDase-1 Gene Increases Infectivity in Mice Infected with Trypanosoma cruzi. Int J Mol Sci 2022; 23:ijms232314661. [PMID: 36498985 PMCID: PMC9736689 DOI: 10.3390/ijms232314661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) are enzymes located on the surface of the T. cruzi plasma membrane, which hydrolyze a wide range of tri-/-diphosphate nucleosides. In this work, we used previously developed genetically modified strains of Trypanosoma cruzi (T. cruzi), hemi-knockout (KO +/−) and overexpressing (OE) the TcNTPDase-1 gene to evaluate the parasite infectivity profile in a mouse model of acute infection (n = 6 mice per group). Our results showed significantly higher parasitemia and mortality, and lower weight in animals infected with parasites OE TcNTPDase-1, as compared to the infection with the wild type (WT) parasites. On the other hand, animals infected with (KO +/−) parasites showed no mortality during the 30-day trial and mouse weight was more similar to the non-infected (NI) animals. In addition, they had low parasitemia (45.7 times lower) when compared with parasites overexpressing TcNTPDase-1 from the hemi-knockout (OE KO +/−) group. The hearts of animals infected with the OE KO +/− and OE parasites showed significantly larger regions of cardiac inflammation than those infected with the WT parasites (p < 0.001). Only animals infected with KO +/− did not show individual electrocardiographic changes during the period of experimentation. Together, our results expand the knowledge on the role of NTPDases in T. cruzi infectivity, reenforcing the potential of this enzyme as a chemotherapy target to treat Chagas disease (CD).
Collapse
Affiliation(s)
- Natália Lins da Silva-Gomes
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular-IOC/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | | | - Claudia Moreira
- Laboratório de Biologia Molecular de Tripanossomatídeos-ICC/FIOCRUZ, Curitiba 81350-010, Brazil
| | - Marcelo Meuser-Batista
- Laboratório de Educação Profissional em Técnicas Laboratoriais em Saúde, EPSJV/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | | | | | - Stênio Fragoso
- Laboratório de Biologia Molecular de Tripanossomatídeos-ICC/FIOCRUZ, Curitiba 81350-010, Brazil
| | | | | | - Otacilio C. Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular-IOC/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
- Correspondence:
| |
Collapse
|
3
|
Oliveira DSD, Leite ALJ, Pedrosa TCF, Mota LWR, Costa GDP, Souza DMSD, Perucci LO, Talvani A. Insights into IL-33 on inflammatory response during in vitro infection by Trypanosoma cruzi. Immunobiology 2022; 227:152243. [PMID: 35839730 DOI: 10.1016/j.imbio.2022.152243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/14/2022] [Accepted: 07/06/2022] [Indexed: 11/05/2022]
Abstract
Inflammatory and regulatory cytokines play an important role in the immunopathogenesis of Trypanosoma cruzi infection. Interleukin (IL)-33 is a member of the IL-1 superfamily of cytokines whose expression/production is upregulated following pro-inflammatory stimulation to alert the immune system in response to tissue stress or damage. The aim of this study was to evaluate the inflammatory profile induced in cultured J774 cells stimulated or not with IL-33 (10 ng/mL), with live parasites (1 × 106 metacyclic trypomastigote forms) and/or total antigen, TcAg (100 µg/mL) and with both, IL-33 and TcAg/T. cruzi. The cultures were evaluated at 24 h and 48 h after addition of the stimuli. For this, the supernatants were collected for the measurement of TNF, IL-17, CCL2, and IL-10 by ELISA and of nitrite by the Griess method. TNF, IL-17, and CCL2 concentrations were elevated in the presence of TcAg or live T. cruzi parasites at 24 h, and the addition of IL-33 potentiated these effects at 48 h. In addition, the T. cruzi-amastigote forms reduced in those infected J774 cells stimulated with IL-33 at 48 h. In conclusion, the IL-33 elevated the production of the TNF, IL-17, and CCL2 in cultured J774 cells stimulated with T. cruzi and/or its antigen and reduced the intracellular parasites, providing impetus to new investigations on its potential actions on the parasite-induced inflammation.
Collapse
Affiliation(s)
- Daniela Silva de Oliveira
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Biological Science Post-Graduate Program Federal University of Ouro Preto, Brazil
| | - Ana Luísa Junqueira Leite
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Biological Science Post-Graduate Program Federal University of Ouro Preto, Brazil
| | - Tamiles Caroline Fernandes Pedrosa
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Biological Science Post-Graduate Program Federal University of Ouro Preto, Brazil
| | - Ludmilla Walter Reis Mota
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Nucleus of Research on Biological Sciences Federal University of Ouro Preto, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Health and Nutrition Post-Graduate Program Federal University of Ouro Preto, Brazil
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Health and Nutrition Post-Graduate Program Federal University of Ouro Preto, Brazil
| | - Luiza Oliveira Perucci
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Nucleus of Research on Biological Sciences Federal University of Ouro Preto, Brazil.
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Health and Nutrition Post-Graduate Program Federal University of Ouro Preto, Brazil; Health Sciences, Infectology and Tropical Medicine Post-Graduate Program Federal University of Minas Gerais, Brazil.
| |
Collapse
|
4
|
The Ecto-5
′
nucleotidase/CD73 Mediates Leishmania amazonensis Survival in Macrophages. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9928362. [PMID: 35187176 PMCID: PMC8856795 DOI: 10.1155/2022/9928362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022]
Abstract
Endogenous nucleotides produced by various group of cells under inflammatory conditions act as potential danger signals in vivo. Extracellularly released nucleotides such as ATP are rapidly hydrolyzed to adenosine by the coordinated ectonucleotidase activities of CD39 and CD73. Leishmania is an obligate intracellular parasite of macrophages and capable of modulating host immune response in order to survive and multiply within host cells. In this study, the activity of CD73 induced by Leishmania amazonensis in infected macrophages has been investigated and correlated with parasite survival and infection in vitro. For this, the expression of CD39 and CD73, by flow cytometry, in murine peritoneal macrophages infected with metacyclic promastigotes of L. amazonensis has been analyzed. Our results showed that L. amazonensis-infected macrophages, unlike LPS-treated macrophages, increased CD73 expression. It was also noted that when CD73 enzymatic activity was blocked by α, β-methyleneadenosine 5′-diphosphate sodium salt (APCP), macrophage parasitism was significantly decreased. Interestingly, these effects were not associated with the production of TNF-α, IL-10, or nitric oxide (NO). Together, these data demonstrate that L. amazonensis induces a regulatory phenotype in macrophages, which by activating the CD39/CD73 pathway allows parasite survival through the action of immunomodulatory adenosine receptors.
Collapse
|