1
|
Ross RL, Caballero-Ruiz B, Clarke EL, Kakkar V, Wasson CW, Mulipa P, De Lorenzis E, Merchant W, Di Donato S, Rindone A, Herrick AL, Denton CP, Riobo-Del Galdo NA, Del Galdo F. Biological hallmarks of systemic sclerosis are present in the skin and serum of patients with Very Early Diagnosis of Systemic Sclerosis (VEDOSS). Rheumatology (Oxford) 2025; 64:3606-3617. [PMID: 39700423 DOI: 10.1093/rheumatology/keae698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVE The Very Early Diagnosis of Systemic Sclerosis (VEDOSS) EUSTAR study showed that, despite not showing any clinical sign of disease, patients with Raynaud's and ANA and/or capillaroscopy abnormalities often progress to SSc within 5 years. We aimed to determine whether VEDOSS biosamples show biological SSc activity pre-clinically. METHODS Skin biopsies were histologically analysed. Dermal fibroblasts analysed by RT-qPCR and gel contraction assays. Sera were assayed by Luminex (CXCL10) or ELISA (ELF score). Healthy controls (HC) and SSc biosamples were used for controls. RESULTS Overall, 114 consecutive VEDOSS patients were enrolled, of which 36 consented to have skin biopsies. Skin biopsies showed a variable but overall increased collagen staining and skin thickness, increased perivascular infiltrate of CD45-positive cells and CXCL10 expression. In vitro, VEDOSS dermal fibroblasts showed increased profibrotic gene expression and contractibility compared with HC. Increased serological CXCL10 [mean (s.d.) 75.90 (107.80) vs HC 39.90 (26.27) pg/ml, P = 0.02] and ELF score was evident in VEDOSS compared with HC [8.19 (0.78) vs 8.55 (0.79), P = 0.04]. In longitudinal analysis of a median of 27.5 (interquartile range 44.5) months, 14.9% of VEDOSS patients progressed to SSc. Baseline CXCL10 serum concentration was significantly higher in the VEDOSS patients that progressed (2-fold increase, P = 0.0071) and correlated with ELF score (R = 0.3096, P = 0.0065). CONCLUSIONS Despite not fulfilling classification criteria, VEDOSS patients show SSc-linked fibrosis and immunity dysregulation both within the tissue and sera, supporting a biological diagnosis of disease and a window of opportunity to detect the biological pathways amenable for preventive intervention.
Collapse
Affiliation(s)
- Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Begoña Caballero-Ruiz
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Emily L Clarke
- Section of Pathology and Tumour Biology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals, NHS Trust, St James's University Hospital, Leeds, UK
| | - Vishal Kakkar
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Christopher W Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Panji Mulipa
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Enrico De Lorenzis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Will Merchant
- Leeds Teaching Hospitals, NHS Trust, St James's University Hospital, Leeds, UK
| | - Stefano Di Donato
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Andrea Rindone
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Department of Rheumatology and Medical Science, University of Milan, ASST Gaetano Pini-CTO Institute, Milan, Italy
| | - Ariane L Herrick
- Division of Musculoskeletal & Dermatological Sciences, The University of Manchester, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Christopher P Denton
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| | - Natalia A Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| |
Collapse
|
2
|
Wu Z, Yang J, Zhu Y, Li J, Xu K, Li Y, Zhong G, Xu Y, Guo Y, Zhang Y. Causal Associations of Inflammatory Cytokines With Osteosarcopenia: Insights From Mendelian Randomization and Single Cell Analysis. Mediators Inflamm 2025; 2025:6005225. [PMID: 40224485 PMCID: PMC11986192 DOI: 10.1155/mi/6005225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/01/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Osteosarcopenia, the coexistence of osteoporosis and sarcopenia, poses significant challenges in aging populations due to its dual impact on bone and muscle health. Inflammation, mediated by specific cytokines, is thought to play a crucial role in the development of osteosarcopenia, though the underlying mechanisms are not fully understood. Objective: This study aimed to clarify the causal role of circulating cytokines in the pathogenesis of osteosarcopenia by employing mendelian randomization (MR) and single-cell RNA sequencing (scRNA-seq) to identify cell-specific cytokine expression patterns. The ultimate objective was to uncover potential pathological mechanisms and therapeutic targets for treating osteosarcopenia. Methods: A two-sample MR approach was employed, leveraging publicly available genome-wide association study (GWAS) data from multiple cohorts. A total of 91 circulating cytokines were examined using genetic instruments, and their causal effects on traits related to osteoporosis and sarcopenia were evaluated. Various complementary and sensitivity analyses were performed to ensure robust findings. Additionally, scRNA-seq datasets from human muscle and bone marrow were analyzed to validate the single-cell expression profiles of candidate cytokines. Results: MR analysis identified several cytokines with causal effects on osteosarcopenia traits, including LTA, CD40, CXCL6, CXCL10, DNER (delta and notch-like epidermal growth factor-related receptor), and VEGFA (vascular endothelial growth factor A). LTA and CD40 were protective for both bone and muscle, while VEGFA posed a risk. Other cytokines demonstrated opposite effects on bone and muscle. Single cell analysis revealed distinct expression patterns, with LTA highly expressed in lymphocytes, CD40 in immune cells, and VEGFA in various musculoskeletal cell types. Age-related differences in cytokine expression were also noted, with LTA more highly expressed in younger individuals, and VEGFA in older individuals. Conclusion: This study offers preliminary insights into the inflammatory mechanisms potentially driving osteosarcopenia, identifying key cytokines that may be involved in its pathogenesis. By integrating MR and scRNA-seq data, we highlight potential therapeutic targets, though further research is needed to confirm these findings and their implications for musculoskeletal health.
Collapse
Affiliation(s)
- Zugui Wu
- Department of Bone Tumor, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong, China
- Department of Orthopaedic, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650000, Yunnan, China
| | - Jiyong Yang
- Department of Orthopaedic, The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, China
- Department of Orthopaedic, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, Guangdong, China
| | - Yue Zhu
- Department of Orthopaedic, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650000, Yunnan, China
| | - Jiao Li
- Department of Orthopaedic, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650000, Yunnan, China
| | - Kang Xu
- Department of Orthopaedic, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650000, Yunnan, China
| | - Yuanlong Li
- Department of Bone Tumor, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Guoqing Zhong
- Department of Bone Tumor, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Yanfei Xu
- Department of Orthopaedic, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650000, Yunnan, China
| | - Ying Guo
- Department of Orthopaedic, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650000, Yunnan, China
| | - Yu Zhang
- Department of Bone Tumor, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong, China
| |
Collapse
|
3
|
Stemmerik MG, Tasca G, Gilhus NE, Servais L, Vicino A, Maggi L, Sansone V, Vissing J. Biological biomarkers in muscle diseases relevant for follow-up and evaluation of treatment. Brain 2025; 148:363-375. [PMID: 39397743 DOI: 10.1093/brain/awae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Muscle diseases cover a diverse group of disorders that, in most cases, are hereditary. The rarity of the individual muscle diseases provides a challenge for researchers when wanting to establish natural history of the conditions and when trying to develop diagnostic tools, therapies, and outcome measures to evaluate disease progression. With emerging molecular therapies in many genetic muscle diseases, as well as biological therapies for the immune-mediated diseases, biological biomarkers play an important role in both drug development and evaluation. In this review, we focus on the role of biological biomarkers in muscle diseases and discuss their utility as surrogate end points in therapeutic trials. We categorize these as either (i) disease unspecific markers; (ii) markers of specific pathways that may be used for more than one disease; or (iii) disease-specific markers. We also propose that evaluation of specific therapeutic interventions benefits from biological markers that match the intervention.
Collapse
Affiliation(s)
- Mads G Stemmerik
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne NE1 3BZ, UK
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
- Department of Neurology, Haukeland University Hospital, 5009 Bergen, Norway
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 3PT, UK
- Division of Child Neurology, Department of Pediatrics, Centre de Référence des Maladies Neuromusculaires, University Hospital Liège and University of Liège, 4000 Liège, Belgium
| | - Alex Vicino
- Nerve-Muscle Unit, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan MI, Italy
| | - Valeria Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan- ERN for Neuromuscular Diseases, 20162 Milan MI, Italy
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Reyes-Huerta RF, Mandujano-López V, Velásquez-Ortiz MG, Alcalá-Carmona B, Ostos-Prado MJ, Reyna-Juárez Y, Meza-Sánchez DE, Juárez-Vega G, Mejía-Domínguez NR, Torres-Ruiz J, Gómez-Martín D, Maravillas-Montero JL. Novel B-cell subsets as potential biomarkers in idiopathic inflammatory myopathies: insights into disease pathogenesis and disease activity. J Leukoc Biol 2024; 116:84-94. [PMID: 38554062 DOI: 10.1093/jleuko/qiae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
Idiopathic inflammatory myopathies are a heterogeneous group of rare autoimmune disorders characterized by progressive muscle weakness and the histopathologic findings of inflammatory infiltrates in muscle tissue. Although their pathogenesis remains indefinite, the association of autoantibodies with clinical manifestations and the evidence of high effectiveness of depleting therapies suggest that B cells could be implicated. Therefore, we explored the landscape of peripheral B cells in this disease by multiparametric flow cytometry, finding significant numerical decreases in memory and double-negative subsets, as well as an expansion of the naive compartment relative to healthy controls, that contribute to defining disease-associated B-cell subset signatures and correlating with different clinical features of patients. Additionally, we determined the potential value of these subsets as diagnostic biomarkers, thus positioning B cells as neglected key elements possibly participating in idiopathic inflammatory myopathy onset or development.
Collapse
Affiliation(s)
- Raúl F Reyes-Huerta
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, CU, Coyoacán, Mexico City 04510, Mexico
| | - Vladimir Mandujano-López
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
| | - Ma Guadalupe Velásquez-Ortiz
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, CU, Coyoacán, Mexico City 04510, Mexico
| | - Beatriz Alcalá-Carmona
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - María J Ostos-Prado
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Yatzil Reyna-Juárez
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - David E Meza-Sánchez
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Jiram Torres-Ruiz
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Diana Gómez-Martín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - José L Maravillas-Montero
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| |
Collapse
|
5
|
De Paepe B. Incorporating circulating cytokines into the idiopathic inflammatory myopathy subclassification toolkit. Front Med (Lausanne) 2023; 10:1130614. [PMID: 37007787 PMCID: PMC10061103 DOI: 10.3389/fmed.2023.1130614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Extensive diagnostic delays and deferred treatment impact the quality of life of patients suffering from an idiopathic inflammatory myopathy. In-depth subtyping of patients is a necessary effort to engage appropriate disease management and may require specialized and elaborate evaluation of the complex spectrum of clinical and pathological disease features. Blood samples are routinely taken for diagnostic purposes, with creatine kinase measurement and autoantibody typing representing standard diagnostic tools in the clinical setting. However, for many patients the diagnostic odyssey includes the invasive and time-consuming procedure of taking a muscle biopsy. It is proposed that further implementation of blood-based disease biomarkers represents a convenient alternative approach with the potential to reduce the need for diagnostic muscle biopsies substantially. Quantification of judicious combinations of circulating cytokines could be added to the diagnostic flowchart, and growth differentiation factor 15 and C-X-C motif chemokine ligand 10 come forward as particularly good candidates. These biomarkers can offer complementary information for diagnosis indicative of disease severity, therapeutic response and prognosis.
Collapse
|
6
|
Thoma A, Earl KE, Goljanek-Whysall K, Lightfoot AP. Major histocompatibility complex I-induced endoplasmic reticulum stress mediates the secretion of pro-inflammatory muscle-derived cytokines. J Cell Mol Med 2022; 26:6032-6041. [PMID: 36426551 PMCID: PMC9753450 DOI: 10.1111/jcmm.17621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Major histocompatibility complex (MHC) I is an important component of intracellular antigen presentation. However, improper expression of MHC I upon the cell surface has been associated with several autoimmune diseases. Myositis is a rare acquired autoimmune disease which targets skeletal muscle, and MHC I overexpression on the surface of muscle fibres and immune cell infiltration are clinical hallmarks. MHC I overexpression may have an important pathogenic role, mediated by the activation of the endoplasmic reticulum (ER) stress response. Given the evidence that muscle is a diverse source of cytokines, we aimed to investigate whether MHC I overexpression can modify the profile of muscle-derived cytokines and what role the ER stress pathway may play. Using C2C12 myoblasts we overexpressed MHC I with a H-2kb vector in the presence or absence of salubrinal an ER stress pathway modifying compound. MHC I overexpression induced ER stress pathway activation and elevated cytokine gene expression. MHC I overexpression caused significant release of cytokines and chemokines, which was attenuated in the presence of salubrinal. Conditioned media from MHC I overexpressing cells induced in vitro T-cell chemotaxis, atrophy of healthy myotubes and modified mitochondrial function, features which were attenuated in the presence of salubrinal. Collectively, these data suggest that MHC I overexpression can induce pro-inflammatory cytokine/chemokine release from C2C12 myoblasts, a process which appears to be mediated in-part by the ER stress pathway.
Collapse
Affiliation(s)
- Anastasia Thoma
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Kate E Earl
- School of Life and Medical Sciences, University of Hertfordshire, Hertfordshire, UK
| | - Katarzyna Goljanek-Whysall
- Institute for Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,Discipline of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Adam P Lightfoot
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
7
|
Elevated G-CSF, IL8, and HGF in patients with definite Meniere's disease may indicate the role of NET formation in triggering autoimmunity and autoinflammation. Sci Rep 2022; 12:16309. [PMID: 36175465 PMCID: PMC9522806 DOI: 10.1038/s41598-022-20774-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/19/2022] [Indexed: 11/08/2022] Open
Abstract
The etiology and mechanism causing Meniere’s disease (MD) are not understood. The present study investigated the possible molecular mechanism of autoimmunity and autoinflammation associated with MD. Thirty-eight patients with definite MD and 39 normal volunteers were recruited, and 48 human cytokines/chemokines were quantified. In patients with MD pure tone audiograms, tympanograms and standard blood tests were performed. The mean hearing loss in the worse ear was 44.1 dB nHL. Compared to the referents, the concentrations of TNFα, IL1α, IL8, CTACK, MIP1α, MIP1β, G-CSF, and HGF in the sera of patients with MD were significantly elevated, while those of TRAIL and PDGFBB were significantly decreased. The area under the receiver operating characteristic curve (AUC) showed that G-CSF, MIP1α, and IL8 were above 0.8 and could be used to diagnose MD (p < 0.01), and the AUCs of CTACK and HGF were above 0.7 and acceptable to discriminate the MD group from the control group (p < 0.01). The revised AUCs (1 − AUC) of TRAIL and PDGFBB were above 0.7 and could also be used in the diagnosis of MD (p < 0.01). The linear regression showed significant correlations between MIP1α and GCSF, between IL2Rα and GCSF, between IL8 and HGF, between MIP1α and IL8, and between SCF and CTACK; there was a marginal linear association between IP10 and MIP1α. Linear regression also showed that there were significant age-related correlations of CTACK and MIG expression in the MD group (p < 0.01, ANOVA) but not in the control group. We hypothesize that G-CSF, IL8, and HGF, which are involved in the development of neutrophil extracellular traps (NETs) and through various mechanisms influence the functions of macrophages, lymphocytes, and dendritic cells, among others, are key players in the development of EH and MD and could be useful in elucidating the pathophysiological mechanisms leading to MD. Biomarkers identified in the present study may suggest that both autoimmune and autoinflammatory mechanisms are involved in MD. In the future, it will be valuable to develop a cost-effective method to detect G-CSF, IL8, HGF, CTACK, MIP1α, TRAIL, and PDGFBB in the serum of patient that have diagnostic relevance.
Collapse
|