1
|
Pan Z, Li Z, Xie H, Huang Y, Xue CC, Wu X, Wong TY, Zhang C, Jonas JB, Wang YX. Reexamine the link between retinal layer thickness and cognitive function after correction of axial length: the Beijing Eye Study 2011. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-025-06777-x. [PMID: 40009225 DOI: 10.1007/s00417-025-06777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
PURPOSE To investigate the relationship between retinal layer thickness and cognitive function in elderly Chinese, accounting for the influence of axial length. METHODS The participants of the Beijing Eye Study 2011 which is a population-based cross-sectional study without any retinal or optic nerve disease underwent a series of ocular examinations including spectral-domain optical coherence tomography (OCT) of the retina. Using a multiple-surface OCT segmentation algorithm, the retina was automatically segmented into 9 layers. Cognitive function was evaluated applying the Mini Mental Statement Examination (MMSE). Cognitive impairment was defined as an MMSE score < 26. RESULTS The study included 2067 participants (56.7% women) (2067 eyes) with a mean age of 61.4 ± 8.4 years. After adjusting for age, gender and axial length, a lower cognitive function was related with a thinning of the ganglion cell layer (GCL) (P = 0.029, B = 0.04) and photoreceptor outer segment layer (POS) (P = 0.042, B = 0.04), while the retinal nerve fiber layer (RNFL) thickness (P = 0.144) was not significantly associated with the cognitive function score. For every unit decrease in MMSE score, the GCL and POS thickness separately decreased by 0.06 µm (95%CI: 0.01 µm, 0.12 µm), and 0.05 µm (95%CI: 0.002 µm, 0.10 µm). As compared with cognitively normal participants, those with cognitive impairment had a significantly thinner GCL (P = 0.019, OR = 1.04), and POS (P = 0.022, OR = 1.04) in multivariate logistic regression. CONCLUSION After adding axial length as dependence in multivariate analysis, cognitive impairment was not significantly associated with the thickness of RNFL, while the association between a lower cognitive function score and thinner GCL and POS was statistically associated in current study.
Collapse
Affiliation(s)
- Zhe Pan
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital University of Medical Science, 1 Dongjiaomin Lane, Dongcheng, Beijing, 100730, China
- Beijing Visual Science and Translational Eye Research Institute (BERI), Beijing Tsinghua Changgung Hospital, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Zihan Li
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital University of Medical Science, 1 Dongjiaomin Lane, Dongcheng, Beijing, 100730, China
- Beijing Visual Science and Translational Eye Research Institute (BERI), Beijing Tsinghua Changgung Hospital, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Hui Xie
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Yu Huang
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital University of Medical Science, 1 Dongjiaomin Lane, Dongcheng, Beijing, 100730, China
| | - Can Can Xue
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Xiaodong Wu
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Tien Yin Wong
- Beijing Visual Science and Translational Eye Research Institute (BERI), Beijing Tsinghua Changgung Hospital, Tsinghua Medicine, Tsinghua University, Beijing, China
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Chun Zhang
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
- Beijing Visual Science and Translational Eye Research Institute (BERI), Beijing Tsinghua Changgung Hospital, Tsinghua Medicine, Tsinghua University, Beijing, China.
| | - Jost B Jonas
- Beijing Visual Science and Translational Eye Research Institute (BERI), Beijing Tsinghua Changgung Hospital, Tsinghua Medicine, Tsinghua University, Beijing, China
- Rothschild Foundation Hospital, Institut Français de Myopie, Paris, France
- Privatpraxis Prof Jonas Und Dr Panda-Jonas, Heidelberg, Germany
| | - Ya Xing Wang
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital University of Medical Science, 1 Dongjiaomin Lane, Dongcheng, Beijing, 100730, China.
- Beijing Visual Science and Translational Eye Research Institute (BERI), Beijing Tsinghua Changgung Hospital, Tsinghua Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Olivares Ordoñez MA, Smith RC, Yiu G, Liu YA. Retinal Microstructural and Microvascular Changes in Alzheimer Disease: A Review. Int Ophthalmol Clin 2025; 65:59-67. [PMID: 39710907 PMCID: PMC11817161 DOI: 10.1097/iio.0000000000000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
"The eyes are a window to the brain," prompting the investigation of whether retinal biomarkers can indicate Alzheimer disease (AD) and cognitive impairment. AD is a neurodegenerative condition with a lengthy preclinical phase where pathologic changes in the central nervous system (CNS) occur before clinical symptoms. Mild cognitive impairment (MCI) often precedes AD. As part of the CNS, the retina exhibits similar pathologic changes related to AD as those seen in the brains of patients with MCI. Noninvasive imaging technologies such as optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) allow high-resolution visualization of the retina, providing an opportunity to screen and monitor AD noninvasively. In this review, we summarize the relationship between AD and retinal pathology detected by OCT and OCTA. The most common findings in patients with AD include peripapillary retinal nerve fiber layer thinning, decreased macular thickness, an enlarged foveal avascular zone, and decreased vascular densities in the superficial and deep capillary plexuses. These retinal changes correlate with magnetic resonance imaging (MRI) findings of cerebral atrophy, positron emission tomography (PET) findings of increased amyloid load, and neuropsychological testing results suggesting cognitive dysfunction. We conclude that retinal microstructural and microvascular abnormalities may serve as biomarkers for the early detection and clinical monitoring of AD and as tools for evaluating potential treatment effects. Future studies should focus on standardizing protocols for in vivo ophthalmic imaging to measure retinal pathology in AD and MCI.
Collapse
Affiliation(s)
| | | | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Yin Allison Liu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
- Department of Neurology, University of California, Davis, Sacramento, CA
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA
| |
Collapse
|
3
|
Ulusoy EK, Ulusoy DM, Göl MF, Çiçek A, Tokmak TT. Association of lamina cribrosa thickness and hippocampal volume in Alzheimer's disease patients. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-7. [PMID: 39489151 DOI: 10.1055/s-0044-1791658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia and affects a large portion of the elderly population worldwide. OBJECTIVE To analyze the relationship between lamina cribrosa thickness (LCT) and hippocampal volume in patients with AD and mild cognitive impairment (MCI). METHODS The sample in the present study consisted of 20 recently diagnosed MCI patients, 20 recently diagnosed AD patients, and 20 matched healthy volunteers. Every patient underwent magnetic resonance imaging (MRI) scans. The VolBrain software (open-access platform for MRI brain analysis) was used to calculate the hippocampal volume. Optical coherence tomography was performed to measure the LCT. Analysis of variance and Pearson chi-squared tests were employed to assess the results. RESULTS The lowest total hippocampal volume (p < 0.05) was in the AD group, which was 6.14 ± 0.66 mm3, while in the control group, it was 7.7 ± 9.65 mm3, and 6.69 ± 0.46 mm3 in the MCI group. In comparison to the rest of the groups, in the AD group, the LCT was the thinnest (202.17 ± 16.35 µm). As per the results of the study population as a whole, low hippocampal volume causes low LCT, which shows an important relationship (r: 0.41; p < 0.05). CONCLUSION The current findings present evidence of the relationship between hippocampal volume and LCT in patients with AD and MCI.
Collapse
Affiliation(s)
| | | | | | - Ayşe Çiçek
- City Hospital of Kayseri, Ophtalmology Department, Kayseri Turkey
| | | |
Collapse
|
4
|
Sampani K, Ness S, Tuz-Zahra F, Aytan N, Spurlock EE, Alluri S, Chen X, Siegel NH, Alosco ML, Xia W, Tripodis Y, Stein TD, Subramanian ML. Neurodegenerative biomarkers in different chambers of the eye relative to plasma: an agreement validation study. Alzheimers Res Ther 2024; 16:192. [PMID: 39187891 PMCID: PMC11346268 DOI: 10.1186/s13195-024-01556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Protein biomarkers have been broadly investigated in cerebrospinal fluid and blood for the detection of neurodegenerative diseases, yet a clinically useful diagnostic test to detect early, pre-symptomatic Alzheimer's disease (AD) remains elusive. We conducted this study to quantify Aβ40, Aβ42, total Tau (t-Tau), hyperphosphorylated Tau (ptau181), glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) in eye fluids relative to blood. METHODS In this cross-sectional study we collected vitreous humor, aqueous humor, tear fluid and plasma in patients undergoing surgery for eye disease. All six biomarkers were quantitatively measured by digital immunoassay. Spearman and Bland-Altman correlation analyses were performed to assess the agreement of levels between ocular fluids and plasma. RESULTS Seventy-nine adults underwent pars-plana vitrectomy in at least one eye. Of the 79, there were 77 vitreous, 67 blood, 56 tear fluid, and 51 aqueous samples. All six biomarkers were quantified in each bio-sample, except GFAP and NfL in tear fluid due to low sample volume. All six biomarkers were elevated in vitreous humor compared to plasma samples. T-Tau, ptau181, GFAP and NfL were higher in aqueous than in plasma, and t-Tau and ptau181 concentrations were higher in tear fluid than in plasma. Significant correlations were found between Aβ40 in plasma and tears (r = 0.5; p = 0.019), t-Tau in plasma and vitreous (r = 0.4; p = 0.004), NfL in plasma and vitreous (r = 0.3; p = 0.006) and plasma and aqueous (r = 0.5; p = 0.004). No significant associations were found for Aβ42, ptau181 and GFAP among ocular fluids relative to plasma. Bland-Altman analysis showed aqueous humor had the closest agreement to plasma across all biomarkers. Biomarker levels in ocular fluids revealed statistically significant associations between vitreous and aqueous for t-Tau (r = 0.5; p = 0.001), GFAP (r = 0.6; p < 0.001) and NfL (r = 0.7; p < 0.001). CONCLUSION AD biomarkers are detectable in greater quantities in eye fluids than in plasma and show correlations with levels in plasma. Future studies are needed to assess the utility of ocular fluid biomarkers as diagnostic and prognostic markers for AD, especially in those at risk with eye disease.
Collapse
Affiliation(s)
- Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven Ness
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nurgul Aytan
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Elizabeth E Spurlock
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sreevardhan Alluri
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
| | - Xuejing Chen
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Nicole H Siegel
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Veterans Affairs Medical Center, VA Boston Healthcare System, Boston, MA, USA.
- Department of Veterans Affairs Medical Center, VA Bedford Healthcare System, Bedford, MA, USA.
| | - Manju L Subramanian
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA.
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Ye S, Ma S, Liu S, Huang Y, Li D, Li M, Su T, Luo J, Zhang C, Shi D, Hu L, Zhang L, Yu H, He M, Shang X, Zhang X. Shared whole environmental etiology between Alzheimer's disease and age-related macular degeneration. NPJ AGING 2024; 10:36. [PMID: 39103390 DOI: 10.1038/s41514-024-00162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
The comorbidity of Alzheimer's disease (AD) and age-related macular degeneration (AMD) has been established in clinical and genetic studies. There is growing interest in determining the shared environmental factors associated with both conditions. Recent advancements in record linkage techniques enable us to identify the contributing factors to AD and AMD from a wide range of variables. As such, we first constructed a knowledge graph based on the literature, which included all statistically significant risk factors for AD and AMD. An environment-wide association study (EWAS) was conducted to assess the contribution of various environmental factors to the comorbidity of AD and AMD based on the UK biobank. Based on the conditional Q-Q plots and Bayesian algorithm, several shared environmental factors were identified, which could be categorized into the domains of health condition, biological sample parameters, body index, and attendance availability. Finally, we generated a shared etiology landscape for AD and AMD by combining existing knowledge with our novel findings.
Collapse
Affiliation(s)
- Siting Ye
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuo Ma
- Clinical Data Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Ethicon Minimally Invasive Procedures and Advanced Energy, Johnson & Johnson Medical (Shanghai) Device Company, Shanghai, China
| | - Shunming Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Yu Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Dantong Li
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Min Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Ting Su
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Jing Luo
- Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Chi Zhang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Danli Shi
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lianting Hu
- Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Lei Zhang
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
- Central Clinical School, Faculty of Medicine, Monash University, 3800, Melbourne, Australia
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Mingguang He
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China.
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xianwen Shang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China.
| | - Xueli Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, 510080, Guangzhou, China.
| |
Collapse
|
6
|
Zhang Z, Kwapong WR, Cao L, Feng Z, Liu P, Wang R, Wu B, Zhang S. Correlation between serum biomarkers, brain volume, and retinal neuronal loss in early-onset Alzheimer's disease. Neurol Sci 2024; 45:2615-2623. [PMID: 38216851 DOI: 10.1007/s10072-023-07256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
PURPOSE To compare the peripapillary retinal nerve fiber layer (pRNFL), retinal nerve fiber layer (RNFL), and ganglion cell complex (GCC) thickness measurement in early-onset Alzheimer's disease (EOAD) and controls using spectral domain optical coherence tomography (SD-OCT). We also assessed the relationship between SD-OCT measurements and cognitive measures, serum biomarkers for Alzheimer's disease (AD), and cerebral microstructural volume. METHODS pRNFL, RNFL, and GCC thicknesses were measured in 43 EOAD and 42 controls using SD-OCT. Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE) were used to assess cognitive status, magnetic resonance imaging (MRI) tool was used to quantify cerebral microstructural volume, and serum biomarkers were quantified from peripheral blood. RESULTS EOAD patients had thinner pRNFL (P < 0.001), RNFL (P = 0.008), and GCC (P = 0.018) thicknesses compared to controls after adjusting for multiple factors. pRNFL thickness correlated (P = 0.016) with serum t-tau level. Serum Aβ42 (P < 0.05) concentration correlated with RNFL thickness. Importantly, occipital lobe volume (P = 0.010) correlated with GCC thicknesses in EOAD patients. CONCLUSION Our findings suggest that retinal thickness may be useful markers for assessing neurodegenerative process in EOAD.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China
| | - William Robert Kwapong
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China
| | - Le Cao
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China
| | - Zijuan Feng
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China
| | - Peng Liu
- Department of Emergency, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China
| | - Ruilin Wang
- Department of Ophthalmology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China
| | - Bo Wu
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China
| | - Shuting Zhang
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, People's Republic of China.
| |
Collapse
|
7
|
Singlas M, Tran THC, Boucenna W, Diouf M, Godefroy O. Is internal retinal thickness an early marker of Alzheimer's and Lewy body diseases? Rev Neurol (Paris) 2024; 180:220-223. [PMID: 37925357 DOI: 10.1016/j.neurol.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/30/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Affiliation(s)
- M Singlas
- Department of Ophthalmology, Amiens University Hospital, Amiens, France
| | - T H C Tran
- Department of Ophthalmology, Amiens University Hospital, Amiens, France; Laboratory of Lille Neurosiences &Cognition, INSERM U1172, Lille, France
| | - W Boucenna
- Department of Ophthalmology, Amiens University Hospital, Amiens, France
| | - M Diouf
- Department of Biostatistic, Amiens University Hospital, Amiens, France
| | - O Godefroy
- Department of Neurology, Amiens University Hospital, 80054 Amiens, France; Laboratory of and Neurosciences Functional Pathology, (UR 4559), Picardie Jules Verne University, Picardie, France.
| |
Collapse
|
8
|
García-Sánchez A, Sotolongo-Grau O, Tartari JP, Sanabria Á, Esteban-De Antonio E, Pérez-Cordón A, Alegret M, Pytel V, Martínez J, Aguilera N, de Rojas I, Cano A, García-González P, Puerta R, Olivé C, Capdevila M, García-Gutiérrez F, Vivas A, Gómez-Chiari M, Giménez J, Tejero MÁ, Castilla-Martí M, Castilla-Martí L, Tárraga L, Valero S, Ruiz A, Boada M, Marquié M. Macular vessel density in the superficial plexus is not a proxy of cerebrovascular damage in non-demented individuals: data from the NORFACE cohort. Alzheimers Res Ther 2024; 16:42. [PMID: 38378643 PMCID: PMC10877901 DOI: 10.1186/s13195-024-01408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Optical coherence tomography angiography (OCT-A) is a novel tool that allows the detection of retinal vascular changes. We investigated the association of macular vessel density (VD) in the superficial plexus assessed by OCT-A with measures of cerebrovascular pathology and atrophy quantified by brain magnetic resonance imaging (MRI) in non-demented individuals. METHODS Clinical, demographical, OCT-A, and brain MRI data from non-demented research participants were included. We analyzed the association of regional macular VD with brain vascular burden using the Fazekas scale assessed in a logistic regression analysis, and the volume of white matter hyperintensities (WMH) assessed in a multiple linear regression analysis. We also explored the associations of macular VD with hippocampal volume, ventricle volume and Alzheimer disease cortical signature (ADCS) thickness assessed in multiple linear regression analyses. All analyses were adjusted for age, sex, syndromic diagnosis and cardiovascular variables. RESULTS The study cohort comprised 188 participants: 89 with subjective cognitive decline and 99 with mild cognitive impairment. No significant association of regional macular VD with the Fazekas categories (all, p > 0.111) and WMH volume (all, p > 0.051) were detected. VD in the nasal quadrant was associated to hippocampal volume (p = 0.007), but no other associations of macular VD with brain atrophy measures were detected (all, p > 0.05). DISCUSSION Retinal vascular measures were not a proxy of cerebrovascular damage in non-demented individuals, while VD in the nasal quadrant was associated with hippocampal atrophy independently of the amyloid status.
Collapse
Affiliation(s)
- Ainhoa García-Sánchez
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Oscar Sotolongo-Grau
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Ángela Sanabria
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | - Alba Pérez-Cordón
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Montserrat Alegret
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Joan Martínez
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Núria Aguilera
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Clàudia Olivé
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Maria Capdevila
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | | | - Assumpta Vivas
- Department of Diagnostic Imaging, Clínica Corachan, Barcelona, Spain
| | | | - Juan Giménez
- Department of Diagnostic Imaging, Clínica Corachan, Barcelona, Spain
| | | | - Miguel Castilla-Martí
- Clínica Oftalmológica Dr. Castilla, Barcelona, Spain
- Vista Alpina Eye Clinic, Visp, Switzerland
| | - Luis Castilla-Martí
- PhD Programme in Surgery and Morphological Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
- Hôpital Ophtalmique Jules-Gonin, Fondation Asiles Des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.
- CIBERNED, Center for Networked Biomedical Research On Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Ibrahim Y, Xie J, Macerollo A, Sardone R, Shen Y, Romano V, Zheng Y. A Systematic Review on Retinal Biomarkers to Diagnose Dementia from OCT/OCTA Images. J Alzheimers Dis Rep 2023; 7:1201-1235. [PMID: 38025800 PMCID: PMC10657718 DOI: 10.3233/adr-230042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
Background Traditional methods for diagnosing dementia are costly, time-consuming, and somewhat invasive. Since the retina shares significant anatomical similarities with the brain, retinal abnormalities detected via optical coherence tomography (OCT) and OCT angiography (OCTA) have been studied as a potential non-invasive diagnostic tool for neurodegenerative disorders; however, the most effective retinal changes remain a mystery to be unraveled in this review. Objective This study aims to explore the relationship between retinal abnormalities in OCT/OCTA images and cognitive decline as well as evaluating biomarkers' effectiveness in detecting neurodegenerative diseases. Methods A systematic search was conducted on PubMed, Web of Science, and Scopus until December 2022, resulted in 64 papers using agreed search keywords, and inclusion/exclusion criteria. Results The superior peripapillary retinal nerve fiber layer (pRNFL) is a trustworthy biomarker to identify most Alzheimer's disease (AD) cases; however, it is inefficient when dealing with mild AD and mild cognitive impairment (MCI). The global pRNFL (pRNFL-G) is another reliable biomarker to discriminate frontotemporal dementia from mild AD and healthy controls (HCs), moderate AD and MCI from HCs, as well as identifing pathological Aβ42/tau in cognitively healthy individuals. Conversely, pRNFL-G fails to realize mild AD and the progression of AD. The average pRNFL thickness variation is considered a viable biomarker to monitor the progression of AD. Finally, the superior and average pRNFL thicknesses are considered consistent for advanced AD but not for early/mild AD. Conclusions Retinal changes may indicate dementia, but further research is needed to confirm the most effective biomarkers for early and mild AD.
Collapse
Affiliation(s)
- Yehia Ibrahim
- Department of Eye and Vision Sciences, University of Liverpool, Liverpool, UK
| | - Jianyang Xie
- Department of Eye and Vision Sciences, University of Liverpool, Liverpool, UK
| | - Antonella Macerollo
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Rodolfo Sardone
- Department of Eye and Vision Sciences, University of Liverpool, Liverpool, UK
- Statistics and Epidemiology Unit, Local Healthcare Authority of Taranto, Taranto, Italy
| | - Yaochun Shen
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Vito Romano
- Department of Eye and Vision Sciences, University of Liverpool, Liverpool, UK
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Yalin Zheng
- Department of Eye and Vision Sciences, University of Liverpool, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
10
|
Chen S, Zhang D, Zheng H, Cao T, Xia K, Su M, Meng Q. The association between retina thinning and hippocampal atrophy in Alzheimer's disease and mild cognitive impairment: a meta-analysis and systematic review. Front Aging Neurosci 2023; 15:1232941. [PMID: 37680540 PMCID: PMC10481874 DOI: 10.3389/fnagi.2023.1232941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction The retina is the "window" of the central nervous system. Previous studies discovered that retinal thickness degenerates through the pathological process of the Alzheimer's disease (AD) continuum. Hippocampal atrophy is one of the typical clinical features and diagnostic criteria of AD. Former studies have described retinal thinning in normal aging subjects and AD patients, yet the association between retinal thickness and hippocampal atrophy in AD is unclear. The optical coherence tomography (OCT) technique has access the non-invasive to retinal images and magnetic resonance imaging can outline the volume of the hippocampus. Thus, we aim to quantify the correlation between these two parameters to identify whether the retina can be a new biomarker for early AD detection. Methods We systematically searched the PubMed, Embase, and Web of Science databases from inception to May 2023 for studies investigating the correlation between retinal thickness and hippocampal volume. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to assess the study quality. Pooled correlation coefficient r values were combined after Fisher's Z transformation. Moderator effects were detected through subgroup analysis and the meta-regression method. Results Of the 1,596 citations initially identified, we excluded 1,062 studies after screening the titles and abstract (animal models, n = 99; irrelevant literature, n = 963). Twelve studies met the inclusion criteria, among which three studies were excluded due to unextractable data. Nine studies were eligible for this meta-analysis. A positive moderate correlation between the retinal thickness was discovered in all participants of with AD, mild cognitive impairment (MCI), and normal controls (NC) (r = 0.3469, 95% CI: 0.2490-0.4377, I2 = 5.0%), which was significantly higher than that of the AD group (r = 0.1209, 95% CI:0.0905-0.1510, I2 = 0.0%) (p < 0.05). Among different layers, the peripapillary retinal nerve fiber layer (pRNFL) indicated a moderate positive correlation with hippocampal volume (r = 0.1209, 95% CI:0.0905-0.1510, I2 = 0.0%). The retinal pigmented epithelium (RPE) was also positively correlated [r = 0.1421, 95% CI:(-0.0447-0.3192), I2 = 84.1%]. The retinal layers and participants were the main overall heterogeneity sources. Correlation in the bilateral hemisphere did not show a significant difference. Conclusion The correlation between RNFL thickness and hippocampal volume is more predominant in both NC and AD groups than other layers. Whole retinal thickness is positively correlated to hippocampal volume not only in AD continuum, especially in MCI, but also in NC. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, CRD42022328088.
Collapse
Affiliation(s)
- Shuntai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dian Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyu Cao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kun Xia
- Department of Respiratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingwan Su
- Department of Respiratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinggang Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Ashraf G, McGuinness M, Khan MA, Obtinalla C, Hadoux X, van Wijngaarden P. Retinal imaging biomarkers of Alzheimer's disease: A systematic review and meta-analysis of studies using brain amyloid beta status for case definition. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12421. [PMID: 37250908 PMCID: PMC10210353 DOI: 10.1002/dad2.12421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/31/2023]
Abstract
Introduction We performed a systematic review and meta-analysis of the association between retinal imaging parameters and Alzheimer's disease (AD). Methods PubMed, EMBASE, and Scopus were systematically searched for prospective and observational studies. Included studies had AD case definition based on brain amyloid beta (Aβ) status. Study quality assessment was performed. Random-effects meta-analyses of standardized mean difference, correlation, and diagnostic accuracy were conducted. Results Thirty-eight studies were included. There was weak evidence of peripapillary retinal nerve fiber layer thinning on optical coherence tomography (OCT) (p = 0.14, 11 studies, n = 828), increased foveal avascular zone area on OCT-angiography (p = 0.18, four studies, n = 207), and reduced arteriole and venule vessel fractal dimension on fundus photography (p < 0.001 and p = 0.08, respectively, three studies, n = 297) among AD cases. Discussion Retinal imaging parameters appear to be associated with AD. Small study sizes and heterogeneity in imaging methods and reporting make it difficult to determine utility of these changes as AD biomarkers. Highlights We performed a systematic review on retinal imaging and Alzheimer's disease (AD).We only included studies in which cases were based on brain amyloid beta status.Several retinal biomarkers were associated with AD but clinical utility is uncertain.Studies should focus on biomarker-defined AD and use standardized imaging methods.
Collapse
Affiliation(s)
- Gizem Ashraf
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVictoriaAustralia
| | - Myra McGuinness
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Muhammad Azaan Khan
- Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Czarina Obtinalla
- Discipline of OrthopticsSchool of Allied HealthHuman Services & SportCollege of ScienceHealth & EngineeringLa Trobe UniversityMelbourneVictoriaAustralia
| | - Xavier Hadoux
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
| | - Peter van Wijngaarden
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
12
|
Pediconi N, Gigante Y, Cama S, Pitea M, Mautone L, Ruocco G, Ghirga S, Di Angelantonio S. Retinal fingerprints of ALS in patients: Ganglion cell apoptosis and TDP-43/p62 misplacement. Front Aging Neurosci 2023; 15:1110520. [PMID: 37009460 PMCID: PMC10061015 DOI: 10.3389/fnagi.2023.1110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neuron function. Although ophthalmic deficits are not considered a classic symptom of ALS, recent studies suggest that changes in retinal cells, similar to those in the spinal cord motor neurons, have been observed in postmortem human tissues and animal models.MethodsIn this study, we examined by immunofluorescence analysis the retinal cell layers of sporadic ALS patients in post-mortem retinal slices. We evaluated the presence of cytoplasmic TDP-43 and SQSTM1/p62 aggregates, activation of the apoptotic pathway, and microglia and astrocytes reactivity.ResultsWe found in the retinal ganglion cell layer of ALS patients the increase of mislocalized TDP-43, SQSTM1/p62 aggregates, activation of cleaved caspase-3, and microglia density, suggesting that retinal changes can be used as an additional diagnostic tool for ALS.DiscussionThe retina is considered part of the central nervous system, and neurodegenerative changes in the brain may be accompanied by structural and possibly functional changes in the neuroretina and ocular vasculature. Therefore, using in vivo retinal biomarkers as an additional diagnostic tool for ALS may provide an opportunity to longitudinally monitor individuals and therapies over time in a noninvasive and cost-effective manner.
Collapse
Affiliation(s)
- Natalia Pediconi
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Ylenia Gigante
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
- D-Tails s.r.l., Rome, Italy
| | - Silvia Cama
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Martina Pitea
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
- D-Tails s.r.l., Rome, Italy
| | - Lorenza Mautone
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Silvia Ghirga
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Silvia Ghirga,
| | - Silvia Di Angelantonio
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
- D-Tails s.r.l., Rome, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- *Correspondence: Silvia Di Angelantonio,
| |
Collapse
|
13
|
Retinal Neurodegeneration Measured With Optical Coherence Tomography and Neuroimaging in Alzheimer Disease: A Systematic Review. J Neuroophthalmol 2023; 43:116-125. [PMID: 36255105 DOI: 10.1097/wno.0000000000001673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Optical coherence tomography (OCT) has enabled several retinal alterations to be detected in patients with Alzheimer disease (AD), alterations that could be potential biomarkers. However, the relationship between the retina and other biomarkers of AD has been underresearched. We gathered and analyzed the literature about the relationship between retinal and cerebral alterations detected via neuroimaging in patients with AD, mild cognitive impairment (MCI), and preclinical AD. METHODS This systematic review followed the PRISMA Statement guidelines through the 27 items on its checklist. We searched in PubMed, BVS, Scopus, and the Cochrane Library, using the keywords: Alzheimer's disease, optical coherence tomography, white matter, cortex, atrophy, cortical thickness, neuroimaging, magnetic resonance imaging, and positron emission tomography. We included articles that studied the retina in relation to neuroimaging in patients with AD, MCI, and preclinical AD. We excluded studies without OCT, without neuroimaging, clinical cases, opinion articles, systematic reviews, and animal studies. RESULTS Of a total of 35 articles found, 23 were finally included. Although mixed results were found, most of these corroborate the relationship between retinal and brain disorders. CONCLUSIONS More rigorous research is needed in the field, including homogenized, longitudinal, and prolonged follow-up studies, as well as studies that include all stages of AD. This will enable better understanding of the retina and its implications in AD, leading to the discovery of retinal biomarkers that reflect brain alterations in AD patients in an accessible and noninvasive manner.
Collapse
|
14
|
Ghanam AR, Ke S, Wang S, Elgendy R, Xie C, Wang S, Zhang R, Wei M, Liu W, Cao J, Zhang Y, Zhang Z, Xue T, Zheng Y, Song X. Alternative transcribed 3' isoform of long non-coding RNA Malat1 inhibits mouse retinal oxidative stress. iScience 2023; 26:105740. [PMID: 36594014 PMCID: PMC9804114 DOI: 10.1016/j.isci.2022.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/08/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The function of the cancer-associated lncRNA Malat1 during aging is as-of-yet uncharacterized. Here, we show that Malat1 interacts with Nucleophosmin (NPM) in young mouse brain, and with Lamin A/C, hnRNP C, and KAP1 with age. RNA-seq and RT-qPCR reveal a persistent expression of Malat1_2 (the 3'isoform of Malat1) in Malat1Δ1 (5'-1.5 kb deletion) mouse retinas and brains at 1/4th level of the full-length Malat1, while Malat1_1 (the 5'isoform) in Malat1Δ2 (deletion of 3'-conserved 5.7 kb) at a much lower level, suggesting an internal promoter driving the 3' isoform. The 1774 and 496 differentially expressed genes in Malat1Δ2 and Malat1Δ1 brains, respectively, suggest the 3' isoform regulates gene expression in trans and the 5' isoform in cis. Consistently, Malat1Δ2 mice show increased age-dependent retinal oxidative stress and corneal opacity, while Malat1Δ1 mice show no obvious phenotype. Collectively, this study reveals a physiological function of the lncRNA Malat1 3'-isoform during the aging process.
Collapse
Affiliation(s)
- Amr. R. Ghanam
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shengwei Ke
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Shujuan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ramy Elgendy
- Department of Pharmacology, College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Chenyao Xie
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Siqi Wang
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ran Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Min Wei
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiguang Liu
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Cao
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Zhang
- Stroke Center & Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tian Xue
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaoyuan Song
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Moussa M, Falfoul Y, Nasri A, El Matri K, Kacem I, Mrabet S, Chebil A, Gharbi A, Gouider R, El Matri L. Optical coherence tomography and angiography in Alzheimer's disease and other cognitive disorders. Eur J Ophthalmol 2023:11206721221148952. [PMID: 36617984 DOI: 10.1177/11206721221148952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS The aims of this study were to analyze retinal and choroidal changes on optical coherence tomography (OCT) and OCT-Angiography (OCT-A) in Alzheimer's disease (AD) patients and compare them to other forms of major dementia. We also aimed to analyze the correlation between clinical severity of global cognitive deficiency assessed by the mini-mental state exam (MMSE) score and OCT/OCT-A parameters. METHODS Retrospective cross-sectional evaluative study of AD, and age-and gender-matched patients with other dementias. Fundus examination, OCT and OCT-A were compared. RESULTS Ninety-one eyes of AD patients and 53 eyes of patients with other dementias were included. Retinal deposits were found in 6.59% of AD cases. OCT highlighted the presence of hyperreflective deposits and localized areas of outer retina and ellipsoid zone disruption, respectively in 20.87% and 15.38% of AD cases. Hyperreflective foci were noted within inner retinal layers in 4.39% of AD cases. Quantitative analysis revealed a thicker nasal retinal nerve fiber layer (p = 0.001) and ganglion cell complex in superior (p = 0.011) and temporal quadrants (p = 0.009) in eyes of AD patients, compared to other dementias. OCT-A showed a significantly higher fractal dimension of both superficial and deep capillary plexus (p = 0.005), with lower choriocapillaris density (p = 0.003) in AD patients. CONCLUSIONS Structural OCT could highlight the presence of hyperreflective deposits in AD, probably reflecting beta-amyloid deposits, associated to outer retinal disruptions. Quantitative OCT analysis showed structural differences between AD patients and other dementias, and combined OCT-A could identify microvascular changes in AD patients representing new potential differential diagnosis criteria.
Collapse
Affiliation(s)
- Mohamed Moussa
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Yousra Falfoul
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Amina Nasri
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Khaled El Matri
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Imen Kacem
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Saloua Mrabet
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Ahmed Chebil
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Alya Gharbi
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Riadh Gouider
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Leila El Matri
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
16
|
Zhao B, Yan Y, Wu X, Geng Z, Wu Y, Xiao G, Wang L, Zhou S, Wei L, Wang K, Liao R. The correlation of retinal neurodegeneration and brain degeneration in patients with Alzheimer's disease using optical coherence tomography angiography and MRI. Front Aging Neurosci 2023; 15:1089188. [PMID: 37122375 PMCID: PMC10130430 DOI: 10.3389/fnagi.2023.1089188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Pathological changes in Alzheimer's disease can cause retina and optic nerve degeneration. The retinal changes are correlated with cognitive function. This study aimed to explore the relationship of retinal differences with neuroimaging in patients with Alzheimer's disease, analyze the association of cognitive function with retinal structure and vascular density, and identify potential additional biomarkers for early diagnosis of Alzheimer's disease. Method We performed magnetic resonance imaging (MRI) scans and neuropsychological assessments in 28 patients with mild Alzheimer's disease and 28 healthy controls. Retinal structure and vascular density were evaluated by optical coherence tomography angiography (OCTA). Furthermore, we analyzed the correlation between neuroimaging and OCTA parameters in patients with mild Alzheimer's disease with adjustment for age, gender, years of education, and hypertension. Results In patients with mild Alzheimer's disease, OCTA-detected retinal parameters were not significantly correlated with MRI-detected neuroimaging parameters after Bonferroni correction for multiple testing. Under multivariable analysis controlled for age, gender, years of education, and hypertension, the S-Hemi (0-3) sector of macular thickness was significantly associated with Mini-cog (β = 0.583, P = 0.002) with Bonferroni-corrected threshold at P < 0.003. Conclusion Our findings suggested decreased macular thickness might be associated with cognitive function in mild AD patients. However, the differences in retinal parameters didn't correspond to MRI-detected parameters in this study. Whether OCTA can be used as a new detection method mirroring MRI for evaluating the effect of neuronal degeneration in patients with mild Alzheimer's disease still needs to be investigated by more rigorous and larger studies in the future.
Collapse
Affiliation(s)
- Bingying Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yibing Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Yue Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Guixian Xiao
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Shanshan Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Ling Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- *Correspondence: Kai Wang,
| | - Rongfeng Liao
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Rongfeng Liao,
| |
Collapse
|
17
|
Hao X, Zhang W, Jiao B, Yang Q, Zhang X, Chen R, Wang X, Xiao X, Zhu Y, Liao W, Wang D, Shen L. Correlation between retinal structure and brain multimodal magnetic resonance imaging in patients with Alzheimer's disease. Front Aging Neurosci 2023; 15:1088829. [PMID: 36909943 PMCID: PMC9992546 DOI: 10.3389/fnagi.2023.1088829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Background The retina imaging and brain magnetic resonance imaging (MRI) can both reflect early changes in Alzheimer's disease (AD) and may serve as potential biomarker for early diagnosis, but their correlation and the internal mechanism of retinal structural changes remain unclear. This study aimed to explore the possible correlation between retinal structure and visual pathway, brain structure, intrinsic activity changes in AD patients, as well as to build a classification model to identify AD patients. Methods In the study, 49 AD patients and 48 healthy controls (HCs) were enrolled. Retinal images were obtained by optical coherence tomography (OCT). Multimodal MRI sequences of all subjects were collected. Spearman correlation analysis and multiple linear regression models were used to assess the correlation between OCT parameters and multimodal MRI findings. The diagnostic value of combination of retinal imaging and brain multimodal MRI was assessed by performing a receiver operating characteristic (ROC) curve. Results Compared with HCs, retinal thickness and multimodal MRI findings of AD patients were significantly altered (p < 0.05). Significant correlations were presented between the fractional anisotropy (FA) value of optic tract and mean retinal thickness, macular volume, macular ganglion cell layer (GCL) thickness, inner plexiform layer (IPL) thickness in AD patients (p < 0.01). The fractional amplitude of low frequency fluctuations (fALFF) value of primary visual cortex (V1) was correlated with temporal quadrant peripapillary retinal nerve fiber layer (pRNFL) thickness (p < 0.05). The model combining thickness of GCL and temporal quadrant pRNFL, volume of hippocampus and lateral geniculate nucleus, and age showed the best performance to identify AD patients [area under the curve (AUC) = 0.936, sensitivity = 89.1%, specificity = 87.0%]. Conclusion Our study demonstrated that retinal structure change was related to the loss of integrity of white matter fiber tracts in the visual pathway and the decreased LGN volume and functional metabolism of V1 in AD patients. Trans-synaptic axonal retrograde lesions may be the underlying mechanism. Combining retinal imaging and multimodal MRI may provide new insight into the mechanism of retinal structural changes in AD and may serve as new target for early auxiliary diagnosis of AD.
Collapse
Affiliation(s)
- Xiaoli Hao
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital of Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Xinyue Zhang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Ruiting Chen
- Department of Radiology, Xiangya Hospital of Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital of Central South University, Changsha, China
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital of Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
18
|
Chua J, Li C, Ho LKH, Wong D, Tan B, Yao X, Gan A, Schwarzhans F, Garhöfer G, Sng CCA, Hilal S, Venketasubramanian N, Cheung CY, Fischer G, Vass C, Wong TY, Chen CLH, Schmetterer L. A multi-regression framework to improve diagnostic ability of optical coherence tomography retinal biomarkers to discriminate mild cognitive impairment and Alzheimer’s disease. Alzheimers Res Ther 2022; 14:41. [PMID: 35272711 PMCID: PMC8908577 DOI: 10.1186/s13195-022-00982-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/23/2022] [Indexed: 11/24/2022]
Abstract
Background Diagnostic performance of optical coherence tomography (OCT) to detect Alzheimer’s disease (AD) and mild cognitive impairment (MCI) remains limited. We assessed whether compensating the circumpapillary retinal nerve fiber layer (cpRNFL) thickness for multiple demographic and anatomical factors as well as the combination of macular layers improves the detection of MCI and AD. Methods This cross-sectional study of 62 AD (n = 92 eyes), 108 MCI (n = 158 eyes), and 55 cognitively normal control (n = 86 eyes) participants. Macular ganglion cell complex (mGCC) thickness was extracted. Circumpapillary retinal nerve fiber layer (cpRNFL) measurement was compensated for several ocular factors. Thickness measurements and their corresponding areas under the receiver operating characteristic curves (AUCs) were compared between the groups. The main outcome measure was OCT thickness measurements. Results Participants with MCI/AD showed significantly thinner measured and compensated cpRNFL, mGCC, and altered retinal vessel density (p < 0.05). Compensated RNFL outperformed measured RNFL for discrimination of MCI/AD (AUC = 0.74 vs 0.69; p = 0.026). Combining macular and compensated cpRNFL parameters provided the best detection of MCI/AD (AUC = 0.80 vs 0.69; p < 0.001). Conclusions and relevance Accounting for interindividual variations of ocular anatomical features in cpRNFL measurements and incorporating macular information may improve the identification of high-risk individuals with early cognitive impairment. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00982-0.
Collapse
|
19
|
Vij R, Arora S. A systematic survey of advances in retinal imaging modalities for Alzheimer's disease diagnosis. Metab Brain Dis 2022; 37:2213-2243. [PMID: 35290546 DOI: 10.1007/s11011-022-00927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/04/2022] [Indexed: 01/06/2023]
Abstract
Recent advances in retinal imaging pathophysiology have shown a new function for biomarkers in Alzheimer's disease diagnosis and prognosis. The significant improvements in Optical coherence tomography (OCT) retinal imaging have led to significant clinical translation, particularly in Alzheimer's disease detection. This systematic review will provide a comprehensive overview of retinal imaging in clinical applications, with a special focus on biomarker analysis for use in Alzheimer's disease detection. Articles on OCT retinal imaging in Alzheimer's disease diagnosis were identified in PubMed, Google Scholar, IEEE Xplore, and Research Gate databases until March 2021. Those studies using simultaneous retinal imaging acquisition were chosen, while those using sequential techniques were rejected. "Alzheimer's disease" and "Dementia" were searched alone and in combination with "OCT" and "retinal imaging". Approximately 1000 publications were searched, and after deleting duplicate articles, 145 relevant studies focused on the diagnosis of Alzheimer's disease utilizing retinal imaging were chosen for study. OCT has recently been demonstrated to be a valuable technique in clinical practice as according to this survey, 57% of the researchers employed optical coherence tomography, 19% used ocular fundus imaging, 13% used scanning laser ophthalmoscopy, and 11% have used multimodal imaging to diagnose Alzheimer disease. Retinal imaging has become an important diagnostic technique for Alzheimer's disease. Given the scarcity of available literature, it is clear that future prospective trials involving larger and more homogeneous groups are necessary, and the work can be expanded by evaluating its significance utilizing a machine-learning platform rather than simply using statistical methodologies.
Collapse
Affiliation(s)
- Richa Vij
- School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Sakshi Arora
- School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India.
| |
Collapse
|
20
|
Wang X, Jiao B, Liu H, Wang Y, Hao X, Zhu Y, Xu B, Xu H, Zhang S, Jia X, Xu Q, Liao X, Zhou Y, Jiang H, Wang J, Guo J, Yan X, Tang B, Zhao R, Shen L. Machine learning based on Optical Coherence Tomography images as a diagnostic tool for Alzheimer's disease. CNS Neurosci Ther 2022; 28:2206-2217. [PMID: 36089740 PMCID: PMC9627364 DOI: 10.1111/cns.13963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS We mainly evaluate retinal alterations in Alzheimer's disease (AD) patients, investigate the associations between retinal changes with AD biomarkers, and explore an optimal machine learning (ML) model for AD diagnosis based on retinal thickness. METHODS A total of 159 AD patients and 299 healthy controls were enrolled. The retinal parameters of each participant were measured using optical coherence tomography (OCT). Additionally, cognitive impairment severity, brain atrophy, and cerebrospinal fluid (CSF) biomarkers were measured in AD patients. RESULTS AD patients demonstrated a significant decrease in the average, superior, and inferior quadrant peripapillary retinal nerve fiber layer, macular retinal nerve fiber layer, ganglion cell layer (GCL), inner plexiform layer (IPL) thicknesses, as well as total macular volume (TMV) (all p < 0.05). Moreover, TMV was positively associated with Mini-Mental State Examination and Montreal Cognitive Assessment scores, IPL thickness was correlated negatively with the medial temporal lobe atrophy score, and the GCL thickness was positively correlated with CSF Aβ42 /Aβ40 and negatively associated with p-tau level. Based on the significantly decreased OCT variables between both groups, the XGBoost algorithm exhibited the best diagnostic performance for AD, whose four references, including accuracy, area under the curve, f1 score, and recall, ranged from 0.69 to 0.74. Moreover, the macular retinal thickness exhibited an absolute superiority for AD diagnosis compared with other enrolled variables in all ML models. CONCLUSION We identified the retinal alterations in AD patients and found that macular thickness and volume were associated with AD severity and biomarkers. Furthermore, we confirmed that OCT combined with ML could serve as a potential diagnostic tool for AD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Bin Jiao
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Hui Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yaqin Wang
- Health Management Center, the Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoli Hao
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuan Zhu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Bei Xu
- Eye Center of Xiangya HospitalCentral South UniversityChangshaChina
| | - Huizhuo Xu
- Eye Center of Xiangya HospitalCentral South UniversityChangshaChina
| | - Sizhe Zhang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoliang Jia
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Qian Xu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Xinxin Liao
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina,Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yafang Zhou
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina,Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hong Jiang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Junling Wang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Jifeng Guo
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Xinxiang Yan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Beisha Tang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Rongchang Zhao
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Lu Shen
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina,Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina,Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina,Key Laboratory of Organ InjuryAging and Regenerative Medicine of Hunan ProvinceChangshaChina
| |
Collapse
|
21
|
Un Y, Alpaslan F, Dikmen NT, Sonmez M. Posterior pole analysis and ganglion cell layer measurements in Alzheimer's disease. Hosp Pract (1995) 2022; 50:282-288. [PMID: 35899531 DOI: 10.1080/21548331.2022.2107794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
AIM To compare posterior pole analysis and ganglion cell layer (GCL) of patients with Alzheimer's disease (AD) and controls. METHOD Patients diagnosed with mild and moderate AD included in the study. Posterior pole analysis and GCL measurements were investigated by dividing the macula into superior and inferior hemifields and 5 corresponding zones. RESULTS There were no significant differences between groups for retinal thickness measurements in any retinal zone. GCL measurements showed lower measurements in moderate AD group for GCL thickness in the superior zone 2 (p:0.025) and inferior zone 2 (p = 0.048) compared to mild AD and controls. A moderate AD status was found to cause a decrease of 5.349 µm in the GCL-SZ2 value [p:0.037]. CONCLUSION GCL measurements in the moderate AD group show significant thinning in superior and inferior Zone 2, which may be a biomarker for AD.
Collapse
Affiliation(s)
- Yasemin Un
- Department of Ophthalmology, Istanbul Haydarpasa Numune Training and Research Hospital, Uskudar, Turkey
| | - Funda Alpaslan
- Department of Neurology, Fethiye State Hospital, Fethiye, Turkey
| | - Nejla Tukenmez Dikmen
- Department of Ophthalmology, Istanbul Sultan Abdulhamid Han Training and Research Hospital, Uskudar, Istanbul, Turkey
| | - Murat Sonmez
- Department of Ophthalmology, Istanbul Sultan Abdulhamid Han Training and Research Hospital, Uskudar, Istanbul, Turkey
| |
Collapse
|
22
|
Dong Y, Guo X, Arsiwala-Scheppach LT, Sharrett AR, Ramulu PY, Mihailovic A, Pan-Doh N, Mosley T, Coresh J, Abraham AG. Association of Optical Coherence Tomography and Optical Coherence Tomography Angiography Retinal Features With Visual Function in Older Adults. JAMA Ophthalmol 2022; 140:809-817. [PMID: 35834267 DOI: 10.1001/jamaophthalmol.2022.2099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Importance Although there is abundant evidence relating neuronal and vascular optical coherence tomography (OCT) and OCT angiography (OCTA) measures to retinal disease, data on the normative distribution of retinal features and their associations with visual function in a healthy, older, community-based population are sparse. Objectives To characterize the normative OCT and OCTA measures in older adults and describe their associations with visual function. Design, Setting, and Participants This was a cross-sectional, observational study conducted from May 17, 2017, to May 31, 2019. The study included a community-based sample. Participants in the Atherosclerosis Risk in Communities study from Jackson, Mississippi (all self-reported Black participants), and Washington County, Maryland (all self-reported White participants), were recruited in the Eye Determinants of Cognition study (EyeDOC). Data analyses were conducted from June 14, 2020, to May 31, 2021. Main Outcomes and Measures Retinal measurements, including retinal nerve fiber layer (RNFL) thickness, macular ganglion cell complex (GCC) thickness, macular vessel density (VD) in the superficial capillary plexus (SCP) and deep capillary plexus (DCP), and foveal avascular zone (FAZ) area, were captured with spectral-domain OCT and OCTA. Visual function, including presenting distance vision, corrected distance vision, near visual acuity (VA), and contrast sensitivity (CS), was assessed. Results A total of 759 participants (mean [SD] age, 80 [4.2] years; 480 female participants [63%]; 352 Black participants [46%]) were included in the study. Mean (SD) GCC thickness (89.2 [9.3] μm vs 92.3 [8.5] μm) and mean (SD) FAZ (0.36 [0.16] mm2 vs 0.26 [0.12] mm2) differed between Jackson and Washington County participants, respectively. Mean (SD) RNFL thickness and mean (SD) VD in SCP and DCP were greater for participants 80 years or younger than for participants older than 80 years (RNFL: ≤80 years, 93.2 [10.5] μm; >80 years, 91.1 [11.6] μm; VD SCP, ≤80 years, 44.3% [3.5%]; >80 years, 43.5% [3.8%]; VD DCP, ≤80 years, 44.7% [4.9%]; >80 years, 43.7% [4.8%]). Linear regression showed each 10-μm increment in RNFL thickness and GCC thickness was positively associated with 0.016 higher logCS among all participants (RNFL: 95% CI, 0.005-0.027; P = .004; GCC: 95% CI, 0.003-0.029; P = .02), with stronger associations among Jackson participants. The associations of VA and structural measures were found only in Jackson participants, with coefficients per 10-μm increment of 0.012 logMAR VA (RNFL: 95% CI, 0.000-0.023; P = .049) and 0.020 logMAR VA (GCC: 95% CI, 0.004-0.034; P = .04). Conclusions and Relevance In this cross-sectional study, better CS was associated with greater RNFL thickness and GCC thickness, but no visual measures were associated with angiographic features overall. These findings suggest that clinical application of normative references for OCT- and OCTA-based measures should consider demographic and community features.
Collapse
Affiliation(s)
- Yanan Dong
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xinxing Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - A Richey Sharrett
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Pradeep Y Ramulu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aleksandra Mihailovic
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nathan Pan-Doh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas Mosley
- The MIND Center, University of Mississippi Medical Center, Jackson
| | - Josef Coresh
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Alison G Abraham
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Denver.,Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Denver
| |
Collapse
|
23
|
Zhang J, Shi L, Shen Y. The retina: A window in which to view the pathogenesis of Alzheimer's disease. Ageing Res Rev 2022; 77:101590. [PMID: 35192959 DOI: 10.1016/j.arr.2022.101590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/14/2022] [Accepted: 02/12/2022] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is the most familiar type of dementia affecting elderly populations worldwide. Studies of AD patients and AD transgenic mice have revealed alterations in the retina similar to alterations which occur in the AD brain. Moreover, AD retinal pathology occurs even earlier than AD brain pathology. Importantly, non-invasive imaging techniques can be utilized for retinal observation due to the unique optical transparency of the eye, which acts as a convenient window in which preclinical pathology in the AD brain can be monitored. In this review, we overview the existing literature covering different forms of AD retinal pathology and propose a basis for the clinical application of using the retina as a window to view AD during preclinical and clinical stages.
Collapse
Affiliation(s)
- Jie Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Lei Shi
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
24
|
Soloperto A, Quaglio D, Baiocco P, Romeo I, Mori M, Ardini M, Presutti C, Sannino I, Ghirga S, Iazzetti A, Ippoliti R, Ruocco G, Botta B, Ghirga F, Di Angelantonio S, Boffi A. Rational design and synthesis of a novel BODIPY-based probe for selective imaging of tau tangles in human iPSC-derived cortical neurons. Sci Rep 2022; 12:5257. [PMID: 35347170 PMCID: PMC8960764 DOI: 10.1038/s41598-022-09016-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/15/2022] [Indexed: 12/26/2022] Open
Abstract
Numerous studies have shown a strong correlation between the number of neurofibrillary tangles of the tau protein and Alzheimer's disease progression, making the quantitative detection of tau very promising from a clinical point of view. However, the lack of highly reliable fluorescent probes for selective imaging of tau neurofibrillary tangles is a major challenge due to sharing similar β–sheet motifs with homologous Amyloid-β fibrils. In the current work, we describe the rational design and the in silico evaluation of a small-size focused library of fluorescent probes, consisting of a BODIPY core (electron acceptor) featuring highly conjugated systems (electron donor) with a length in the range 13–19 Å at C3. Among the most promising probes in terms of binding mode, theoretical affinity and polarity, BT1 has been synthesized and tested in vitro onto human induced pluripotent stem cells derived neuronal cell cultures. The probe showed excellent photophysical properties and high selectivity allowing in vitro imaging of hyperphosphorylated tau protein filaments with minimal background noise. Our findings offer new insight into the structure-activity relationship of this class of tau selective fluorophores, paving the way for boosting tau tangle detection in patients possibly through retinal spectral scans.
Collapse
Affiliation(s)
- Alessandro Soloperto
- Center for Life Nano- & Neuro-Science, Istituto Italiano Di Tecnologia, 00161, Rome, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018-2022, Sapienza University of Rome, 00185, Rome, Italy
| | - Paola Baiocco
- Center for Life Nano- & Neuro-Science, Istituto Italiano Di Tecnologia, 00161, Rome, Italy.,Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Isabella Romeo
- Center for Life Nano- & Neuro-Science, Istituto Italiano Di Tecnologia, 00161, Rome, Italy.,Department of Chemistry and Technology of Drugs, Department of Excellence 2018-2022, Sapienza University of Rome, 00185, Rome, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, 53100, Siena, Italy
| | - Matteo Ardini
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Caterina Presutti
- Center for Life Nano- & Neuro-Science, Istituto Italiano Di Tecnologia, 00161, Rome, Italy.,Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Ida Sannino
- Center for Life Nano- & Neuro-Science, Istituto Italiano Di Tecnologia, 00161, Rome, Italy
| | - Silvia Ghirga
- Center for Life Nano- & Neuro-Science, Istituto Italiano Di Tecnologia, 00161, Rome, Italy
| | - Antonia Iazzetti
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, 00168, Rome, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science, Istituto Italiano Di Tecnologia, 00161, Rome, Italy
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018-2022, Sapienza University of Rome, 00185, Rome, Italy
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018-2022, Sapienza University of Rome, 00185, Rome, Italy.
| | - Silvia Di Angelantonio
- Center for Life Nano- & Neuro-Science, Istituto Italiano Di Tecnologia, 00161, Rome, Italy. .,Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.
| | - Alberto Boffi
- Center for Life Nano- & Neuro-Science, Istituto Italiano Di Tecnologia, 00161, Rome, Italy.,Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| |
Collapse
|
25
|
Alzheimer's Disease Seen through the Eye: Ocular Alterations and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23052486. [PMID: 35269629 PMCID: PMC8910735 DOI: 10.3390/ijms23052486] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s Disease (AD) is one of the main neurodegenerative diseases worldwide. Unfortunately, AD shares many similarities with other dementias at early stages, which impedes an accurate premortem diagnosis. Therefore, it is urgent to find biomarkers to allow for early diagnosis of the disease. There is increasing scientific evidence highlighting the similarities between the eye and other structures of the CNS, suggesting that knowledge acquired in eye research could be useful for research and diagnosis of AD. For example, the retina and optic nerve are considered part of the central nervous system, and their damage can result in retrograde and anterograde axon degeneration, as well as abnormal protein aggregation. In the anterior eye segment, the aqueous humor and tear film may be comparable to the cerebrospinal fluid. Both fluids are enriched with molecules that can be potential neurodegenerative biomarkers. Indeed, the pathophysiology of AD, characterized by cerebral deposits of amyloid-beta (Aβ) and tau protein, is also present in the eyes of AD patients, besides numerous structural and functional changes observed in the structure of the eyes. Therefore, all this evidence suggests that ocular changes have the potential to be used as either predictive values for AD assessment or as diagnostic tools.
Collapse
|
26
|
Santangelo R, Huang SC, Bernasconi MP, Falautano M, Comi G, Magnani G, Leocani L. Neuro-Retina Might Reflect Alzheimer's Disease Stage. J Alzheimers Dis 2021; 77:1455-1468. [PMID: 32925026 DOI: 10.3233/jad-200043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) pathological hallmarks were found in retinas of AD patients. Several studies showed a significant reduction of neuro-retina thickness measured through optical coherence tomography (OCT) in AD patients, but possible correlations between retina morphology, cognition, and cerebrospinal fluid (CSF) AD biomarkers (Aβ42, t-tau, and p-tau) have been poorly investigated so far. OBJECTIVE In the present cross-sectional study, we measured the thickness of neuro-retinal layers through OCT searching for possible correlations with patients' cognitive performances and CSF AD biomarkers. METHODS 137 consecutive subjects [43 with AD, 37 with mild cognitive impairment (MCI), and 57 healthy controls (HC)], received an OCT scan acquisition to measure the peripapillary retinal nerve fiber layer (RNFL) thickness. In a subsample of 21 AD, 18 MCI, and 18 HC, the macular volume of ganglion cell layer (GCL), inner plexiform layer (IPL), and inner nuclear layer was computed. A comprehensive neuropsychological assessment and CSF AD biomarkers' concentrations were available in AD and MCI patients. RESULTS Peripapillary RNFL, global, and in superior quadrant was significantly thinner in AD and MCI patients when compared to HC, while macular GCL volume was significantly reduced only in AD. RNFL thickness in nasal and inferior quadrants was correlated with single CSF AD biomarker concentrations, but no differences were found in retina morphology depending on the presence of a CSF profile typical for AD. Memory performances were positively associated with GCL and IPL volume. CONCLUSION Our findings might propose OCT as a reliable and easy to handle tool able to detect neuro-retinal atrophy in AD in relation with cognitive performances.
Collapse
Affiliation(s)
- Roberto Santangelo
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Giancarlo Comi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neuropsychology Unit, IRCCS San Raffaele Hospital, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
27
|
Ngolab J, Donohue M, Belsha A, Salazar J, Cohen P, Jaiswal S, Tan V, Gessert D, Korouri S, Aggarwal NT, Alber J, Johnson K, Jicha G, van Dyck C, Lah J, Salloway S, Sperling RA, Aisen PS, Rafii MS, Rissman RA. Feasibility study for detection of retinal amyloid in clinical trials: The Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) trial. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12199. [PMID: 34430703 PMCID: PMC8369843 DOI: 10.1002/dad2.12199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The retina and brain exhibit similar pathologies in patients diagnosed with neurodegenerative diseases. The ability to access the retina through imaging techniques opens the possibility for non-invasive evaluation of Alzheimer's disease (AD) pathology. While retinal amyloid deposits are detected in individuals clinically diagnosed with AD, studies including preclinical individuals are lacking, limiting assessment of the feasibility of retinal imaging as a biomarker for early-stage AD risk detection. METHODS In this small cross-sectional study we compare retinal and cerebral amyloid in clinically normal individuals who screened positive for high amyloid levels through positron emission tomography (PET) from the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) trial as well as a companion cohort of individuals who exhibited low levels of amyloid PET in the Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) study. We quantified the number of curcumin-positive fluorescent retinal spots from a small subset of participants from both studies to determine retinal amyloid deposition at baseline. RESULTS The four participants from the A4 trial showed a greater number of retinal spots compared to the four participants from the LEARN study. We observed a positive correlation between retinal spots and brain amyloid, as measured by the standardized uptake value ratio (SUVr). DISCUSSION The results of this small pilot study support the use of retinal fundus imaging for detecting amyloid deposition that is correlated with brain amyloid PET SUVr. A larger sample size will be necessary to fully ascertain the relationship between amyloid PET and retinal amyloid both cross-sectionally and longitudinally.
Collapse
Affiliation(s)
- Jennifer Ngolab
- Department of NeurosciencesSan Diego, School of MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Michael Donohue
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Alison Belsha
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Jennifer Salazar
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Paula Cohen
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Sandhya Jaiswal
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Veasna Tan
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Devon Gessert
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Shaina Korouri
- Department of NeurosciencesSan Diego, School of MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Neelum T. Aggarwal
- Department of Neurological Sciences and the Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Jessica Alber
- George & Anne Ryan Institute for NeuroscienceUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Ken Johnson
- NeuroVision Imaging IncSacramentoCaliforniaUSA
| | - Gregory Jicha
- Department of Neurology & the Sanders‐Brown Center on AgingUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Christopher van Dyck
- Alzheimer's Disease Research UnitDepartments of PsychiatryNeurology, and Neuroscience, Yale School of MedicineNew HavenConnecticutUSA
| | - James Lah
- Department of NeurologyEmory Goizueta Alzheimer's Disease Research CenterEmory University School of MedicineAtlantaGeorgiaUSA
| | - Stephen Salloway
- Memory and Aging ProgramButler HospitalProvidenceRhode IslandUSA
| | - Reisa A. Sperling
- Center for Alzheimer Research and TreatmentBrigham and Women's Hospital Massachusetts General HospitalBostonMassachusettsUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Michael S. Rafii
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Robert A. Rissman
- Department of NeurosciencesSan Diego, School of MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| |
Collapse
|
28
|
Wong MNK, Lai DWL, Chan HHL, Lam BYH. Neural and Retinal Characteristics in Relation to Working Memory in Older Adults with Mild Cognitive Impairment. Curr Alzheimer Res 2021; 18:185-195. [PMID: 34102976 DOI: 10.2174/1567205018666210608114044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/10/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study investigated the relationship between neural activities and retinal structures associated with working memory (WM) in older adults with mild cognitive impairment (MCI). METHODS Eleven older adults with MCI and 29 healthy controls (60 to 73 years old) were tested. All participants underwent an event-related potential (ERP) recording while performing the two-back memory task. The Optical coherence tomography angiography (OCT-A) was administered to examine the perfusion and vessel density in the retina. RESULTS Results showed that WM performance in the MCI group was negatively associated with ERP latencies in central parietal regions (CP6 and CP8) (ps< 0.05). The left nasal vessel and perfusion densities were negatively correlated with the latencies in these two central parietal regions and positively related to WM performance only in the MCI group (ps< 0.05). CONCLUSION The findings on WM, central parietal brain activity, and left nasal vessel and perfusion densities in the retina help us gain a better understanding of the neural and retinal underpinnings of WM in relation to MCI.
Collapse
Affiliation(s)
- Mabel N K Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong
| | - Daniel W L Lai
- Faculty of Social Sciences, Hong Kong Baptist University, 224 Waterloo Rd, Kowloon Tong, Hong Kong
| | - Henry H-L Chan
- School of Optometry, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong
| | - Bess Y-H Lam
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
29
|
Hamedani AG. Vision loss and hallucinations: perspectives from neurology and ophthalmology. Curr Opin Neurol 2021; 34:84-88. [PMID: 33230034 DOI: 10.1097/wco.0000000000000882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to summarize the evidence for visual impairment as a risk factor for visual hallucinations in neurologic disease and recent advances in our understanding of the central visual pathways that mediate this association. RECENT FINDINGS Recent studies have described the prevalence Charles Bonnet syndrome and questioned its lack of association with cognitive impairment, used advanced neuroimaging to show that disinhibition of the occipital lobe is involved in the pathogenesis of visual hallucinations in Parkinson's disease, and demonstrated that visual impairment because of eye disease is a consistent risk factor for visual hallucinations across a number of different neurodegenerative disease populations. SUMMARY Through connections between the primary visual cortex and other brain structures, visual function is closely tied to visual hallucinations. Given that the vast majority of vision loss is caused by ophthalmic disease, much of which is preventable or treatable, the detection and treatment of vision loss in at-risk populations may reduce the burden and consequences of visual hallucinations in older adults.
Collapse
Affiliation(s)
- Ali G Hamedani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Neurocognitive Assessment and Retinal Thickness Alterations in Alzheimer Disease: Is There a Correlation? J Neuroophthalmol 2021; 40:370-377. [PMID: 31453919 DOI: 10.1097/wno.0000000000000831] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The relation of retinal thickness to neuropsychological indexes of cognitive impairment in patients with Alzheimer disease (AD) remains an area of investigation. The scope of this investigation was to compare volume and thickness changes of neuronal retinal layers in subjects with AD with those of age-matched healthy controls and to estimate the relation between cognitive functioning evaluated by neuropsychological assessment and thickness changes of the retina. METHODS This was a prospective single-site study where we evaluated 25 subjects with probable AD matched for age, sex, and education to 17 healthy control subjects (HC). All participants underwent a full medical evaluation, neuropsychological assessment, and optical coherence tomography (OCT) to evaluate the peripapillary retinal nerve fiber layer (pRNFL) thickness, ganglion cell complex (GCC) thickness, and macular volume. RESULTS The pRNFL thickness of AD patients showed a significant overall reduction compared with healthy controls (P = <0.0001). Furthermore, pRNFL was reduced in each retinal quadrant, particularly the inferior, nasal, and superior quadrants. GCC thickness and macular volume were reduced in AD patients in comparison with HC (P = 0.004; P = 0.001). Of particular interest was the correlation between OCT findings and neuropsychological assessment; we did not find a significant association of retinal thinning with worse MMSE score, but reduction of macular volume was associated with worse constructional praxis performance. Impairment of semantic-lexical and processing speed was associated with attenuation of macular GCC thickness. CONCLUSIONS OCT can show early thickness changes in AD patients with subtle memory disturbances. These results suggest that correlations between retinal thinning and cognitive performance warrant further investigation.
Collapse
|
31
|
Past, present and future role of retinal imaging in neurodegenerative disease. Prog Retin Eye Res 2021; 83:100938. [PMID: 33460813 PMCID: PMC8280255 DOI: 10.1016/j.preteyeres.2020.100938] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Retinal imaging technology is rapidly advancing and can provide ever-increasing amounts of information about the structure, function and molecular composition of retinal tissue in humans in vivo. Most importantly, this information can be obtained rapidly, non-invasively and in many cases using Food and Drug Administration-approved devices that are commercially available. Technologies such as optical coherence tomography have dramatically changed our understanding of retinal disease and in many cases have significantly improved their clinical management. Since the retina is an extension of the brain and shares a common embryological origin with the central nervous system, there has also been intense interest in leveraging the expanding armamentarium of retinal imaging technology to understand, diagnose and monitor neurological diseases. This is particularly appealing because of the high spatial resolution, relatively low-cost and wide availability of retinal imaging modalities such as fundus photography or OCT compared to brain imaging modalities such as magnetic resonance imaging or positron emission tomography. The purpose of this article is to review and synthesize current research about retinal imaging in neurodegenerative disease by providing examples from the literature and elaborating on limitations, challenges and future directions. We begin by providing a general background of the most relevant retinal imaging modalities to ensure that the reader has a foundation on which to understand the clinical studies that are subsequently discussed. We then review the application and results of retinal imaging methodologies to several prevalent neurodegenerative diseases where extensive work has been done including sporadic late onset Alzheimer's Disease, Parkinson's Disease and Huntington's Disease. We also discuss Autosomal Dominant Alzheimer's Disease and cerebrovascular small vessel disease, where the application of retinal imaging holds promise but data is currently scarce. Although cerebrovascular disease is not generally considered a neurodegenerative process, it is both a confounder and contributor to neurodegenerative disease processes that requires more attention. Finally, we discuss ongoing efforts to overcome the limitations in the field and unmet clinical and scientific needs.
Collapse
|
32
|
Robbins CB, Grewal DS, Stinnett SS, Soundararajan S, Yoon SP, Polascik BW, Liu AJ, Burke JR, Fekrat S. Assessing the Retinal Microvasculature in Individuals With Early and Late-Onset Alzheimer's Disease. Ophthalmic Surg Lasers Imaging Retina 2021; 52:336-344. [PMID: 34185588 DOI: 10.3928/23258160-20210528-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE To evaluate retinal microvascular changes in early and late-onset Alzheimer's disease (AD). PATIENTS AND METHODS Eighty-six eyes of 50 late-onset AD participants, 27 eyes of 15 early onset AD participants, and 111 eyes of 57 cognitively normal controls were included. Optical coherence tomography angiography (OCTA) vessel density (VD) and perfusion density (PD) in Early Treatment Diabetic Retinopathy Study 3-mm and 6-mm circles and rings were assessed. RESULTS There was decreased PD in early onset AD 3-mm circle (P = .026) and ring (P = .026) versus controls as well as in late-onset AD 3-mm circle (P = .023) and ring (P = .023) versus controls. There was decreased VD in late-onset AD 3-mm circle (P = .012) and ring (P = .006). No parameters differed between early and late-onset AD (P > .05). CONCLUSIONS AD eyes exhibited decreased retinal microvascular density compared to controls. Retinal parameters may not differ between early onset AD and late-onset AD after adjusting for age. [Ophthalmic Surg Lasers Imaging Retina. 2021;52:336-344.].
Collapse
|
33
|
Jiang H, Wang J, Levin BE, Baumel BS, Camargo CJ, Signorile JF, Rundek T. Retinal Microvascular Alterations as the Biomarkers for Alzheimer Disease: Are We There Yet? J Neuroophthalmol 2021; 41:251-260. [PMID: 33136677 PMCID: PMC8079547 DOI: 10.1097/wno.0000000000001140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Alzheimer disease (AD) is a heterogeneous and multifactorial disorder with an insidious onset and slowly progressive disease course. To date, there are no effective treatments, but biomarkers for early diagnosis and monitoring of disease progression offer a promising first step in developing and testing potential interventions. Cerebral vascular imaging biomarkers to assess the contributions of vascular dysfunction to AD are strongly recommended to be integrated into the current amyloid-β (Aβ) [A], tau [T], and neurodegeneration [(N)]-the "AT(N)" biomarker system for clinical research. However, the methodology is expensive and often requires invasive procedures to document cerebral vascular dysfunction. The retina has been used as a surrogate to study cerebral vascular changes. There is growing interest in the identification of retinal microvascular changes as a safe, easily accessible, low cost, and time-efficient approach to enhancing our understanding of the vascular pathogenesis associated with AD. EVIDENCE ACQUISITION A systemic review of the literature was performed regarding retinal vascular changes in AD and its prodromal stages, focusing on functional and structural changes of large retinal vessels (vessels visible on fundus photographs) and microvasculature (precapillary arterioles, capillary, and postcapillary venules) that are invisible on fundus photographs. RESULTS Static and dynamic retinal microvascular alterations such as retinal arterial wall motion, blood flow rate, and microvascular network density were reported in AD, mild cognitive impairment, and even in the preclinical stages of the disease. The data are somewhat controversial and inconsistent among the articles reviewed and were obtained based on cross-sectional studies that used different patient cohorts, equipment, techniques, and analysis methods. CONCLUSIONS Retinal microvascular alterations exist across the AD spectrum. Further large scale, within-subject longitudinal studies using standardized imaging and analytical methods may advance our knowledge concerning vascular contributions to the pathogenesis of AD.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bonnie E. Levin
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bernard S. Baumel
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christian J. Camargo
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Tania Rundek
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
34
|
Fereshetian S, Agranat JS, Siegel N, Ness S, Stein TD, Subramanian ML. Protein and Imaging Biomarkers in the Eye for Early Detection of Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:375-387. [PMID: 34189409 PMCID: PMC8203283 DOI: 10.3233/adr-210283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia worldwide. Although no formal curative therapy exists for the treatment of AD, considerable research has been performed to identify biomarkers for early detection of this disease, and thus improved subsequent management. Given that the eye can be examined and imaged non-invasively with relative ease, it has emerged as an exciting area of research for evidence of biomarkers and to aid in the early diagnosis of AD. This review explores the current understanding of both protein and retinal imaging biomarkers in the eye. Herein, primary findings in the literature regarding AD biomarkers associated with the lens, retina, and other ocular structures are reviewed.
Collapse
Affiliation(s)
- Shaunt Fereshetian
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
| | - Joshua S. Agranat
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Nicole Siegel
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Steven Ness
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Manju L. Subramanian
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| |
Collapse
|
35
|
Donix M, Wittig D, Hermann W, Haussmann R, Dittmer M, Bienert F, Buthut M, Jacobi L, Werner A, Linn J, Ziemssen T, Brandt MD. Relation of retinal and hippocampal thickness in patients with amnestic mild cognitive impairment and healthy controls. Brain Behav 2021; 11:e02035. [PMID: 33448670 PMCID: PMC8119792 DOI: 10.1002/brb3.2035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Investigating retinal thickness may complement existing biological markers for dementia and other neurodegenerative diseases. Although retinal thinning is predictive for cognitive decline, it remains to be investigated if and how this feature aligns with neurodegeneration elsewhere in the brain, specifically in early disease stages. METHODS Using optical coherence tomography and magnetic resonance imaging, we examined retinal thickness as well as hippocampal structure in patients with amnestic mild cognitive impairment and healthy controls. RESULTS The groups did not differ in hippocampal and retinal thickness measures. However, we detected a correlation of peripapillary retinal nerve fiber layer thickness and hippocampal thickness in healthy people but not in cognitively impaired patients. The ratio of hippocampus to retina thickness was significantly smaller in patients with mild cognitive impairment and correlated positively with cognitive performance. CONCLUSIONS Different temporal trajectories of neurodegeneration may disrupt transregional brain structure associations in patients with amnestic mild cognitive impairment.
Collapse
Affiliation(s)
- Markus Donix
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Dierk Wittig
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Department of Ophthalmology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Wiebke Hermann
- Department of Neurology, University Hospital, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Robert Haussmann
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maren Dittmer
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Franziska Bienert
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maria Buthut
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Liane Jacobi
- Department of Neurology, Sächsisches Krankenhaus Arnsdorf, Arnsdorf, Germany
| | - Annett Werner
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Department of Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jennifer Linn
- Department of Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Moritz D Brandt
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
36
|
Rifai OM, McGrory S, Robbins CB, Grewal DS, Liu A, Fekrat S, MacGillivray TJ. The application of optical coherence tomography angiography in Alzheimer's disease: A systematic review. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12149. [PMID: 33718582 PMCID: PMC7927164 DOI: 10.1002/dad2.12149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/12/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Discovering non-invasive and easily acquired biomarkers that are conducive to the accurate diagnosis of dementia is an urgent area of ongoing clinical research. One promising approach is retinal imaging, as there is homology between retinal and cerebral vasculature. Recently, optical coherence tomography angiography (OCT-A) has emerged as a promising new technology for imaging the microvasculature of the retina. METHODS A systematic review and meta-analysis was conducted to examine the application of OCT-A in dementia. RESULTS Fourteen studies assessing OCT-A in preclinical Alzheimer's disease (AD), mild cognitive impairment, or AD were included. Exploratory meta-analyses revealed a significant increase in the foveal avascular zone area and a significant decrease in superficial parafoveal and whole vessel density in AD, although there was significant heterogeneity between studies. DISCUSSION Although certain OCT-A metrics may have the potential to serve as biomarkers for AD, the field requires further standardization to allow conclusions to be reached regarding their clinical utility.
Collapse
Affiliation(s)
- Olivia M. Rifai
- Translational Neuroscience PhD ProgrammeUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesCollege of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
| | - Sarah McGrory
- Centre for Clinical Brain SciencesCollege of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
| | - Cason B. Robbins
- Department of OphthalmologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Dilraj S. Grewal
- Department of OphthalmologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Andy Liu
- Department of NeurologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Sharon Fekrat
- Department of OphthalmologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Thomas J. MacGillivray
- Centre for Clinical Brain SciencesCollege of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
37
|
Chalkias E, Topouzis F, Tegos T, Tsolaki M. The Contribution of Ocular Biomarkers in the Differential Diagnosis of Alzheimer's Disease versus Other Types of Dementia and Future Prospects. J Alzheimers Dis 2021; 80:493-504. [PMID: 33554918 DOI: 10.3233/jad-201516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With dementia becoming increasingly prevalent, there is a pressing need to become better equipped with accurate diagnostic tools that will favorably influence its course via prompt and specific intervention. The overlap in clinical manifestation, imaging, and even pathological findings between different dementia syndromes is one of the most prominent challenges today even for expert physicians. Since cerebral microvasculature and the retina share common characteristics, the idea of identifying potential ocular biomarkers to facilitate diagnosis is not a novel one. Initial efforts included studying less quantifiable parameters such as aspects of visual function, extraocular movements, and funduscopic findings. However, the really exciting prospect of a non-invasive, safe, fast, reproducible, and quantifiable method of pinpointing novel biomarkers has emerged with the advent of optical coherence tomography (OCT) and, more recently, OCT angiography (OCTA). The possibility of analyzing multiple parameters of retinal as well as retinal microvasculature variables in vivo represents a promising opportunity to investigate whether specific findings can be linked to certain subtypes of dementia and aid in their earlier diagnosis. The existing literature on the contribution of the eye in characterizing dementia, with a special interest in OCT and OCTA parameters will be reviewed and compared, and we will explicitly focus our effort in advancing our understanding and knowledge of relevant biomarkers to facilitate future research in the differential diagnosis between Alzheimer's disease and common forms of cognitive impairment, including vascular dementia, frontotemporal dementia, and dementia with Lewy bodies.
Collapse
Affiliation(s)
- Efthymios Chalkias
- A' Ophthalmology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Fotis Topouzis
- A' Ophthalmology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Thomas Tegos
- 1st Neurology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Magda Tsolaki
- 1st Neurology Department, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
38
|
Zhao A, Fang F, Li B, Chen Y, Qiu Y, Wu Y, Xu W, Deng Y. Visual Abnormalities Associate With Hippocampus in Mild Cognitive Impairment and Early Alzheimer's Disease. Front Aging Neurosci 2021; 12:597491. [PMID: 33551787 PMCID: PMC7862343 DOI: 10.3389/fnagi.2020.597491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/28/2020] [Indexed: 01/29/2023] Open
Abstract
Background and Objective: Alzheimer's disease (AD) has been shown to affect vision in human patients and animal models. This study was conducted to explore ocular abnormalities in the primary visual pathway and their relationship with hippocampal atrophy in patients with AD and mild cognitive impairment (MCI). The aim of this study was to investigate the potential value of ocular examinations as a biomarker during the AD progression. Methods: Patients with MCI (n = 23) or AD (n = 17) and age-matched cognitively normal controls (NC; n = 19) were enrolled. Pattern visual-evoked potentials (PVEP), flash electroretinogram (FERG) recordings and optical coherence tomography (OCT) were performed for all participants. Hippocampal volumes were measured by 3T magnetic resonance imaging. Cognitive function was assessed by Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA) and Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog). Pearson correlation was employed to analyze the potential associations between ocular abnormalities and hippocampal volumes. Hierarchical regression models were conducted to determine associations between cognitive performances and ocular abnormalities as well as hippocampal volumes after adjusting for confounding factors including age, sex, cognitive reserve, and APOE4 status. Results: PVEP amplitude of P100 waveform was significantly decreased in AD patients compared to MCI and normal individuals. In FERG test, delayed latencies of rod response, rod cone response and 3.0 flicker time were found in cognitively impaired groups, indicating dysfunctions of both the rod and cone systems in the disease progression. OCT test revealed reduced macular retinal nerve fiber layer (m-RNFL) thickness in MCI and AD patients, which significantly correlated with brain structure of hippocampus particularly vulnerable during the progression of AD. Interestingly, P100 amplitude showed a significant association with hippocampal volumes even after adjusting confounding factors including age, sex, and cognitive reserve. Hierarchical regression analysis further demonstrated that m-RNFL thickness, as well as hippocampal volumes, significantly associated with ADAS-cog scores. Conclusion: P100 amplitude and m-RNFL thickness showed significant correlations with brain structure involved in AD-related neurodegeneration, and therefore proved to be potential indicators of brain imaging pathologies.
Collapse
Affiliation(s)
- Aonan Zhao
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Fang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binyin Li
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Chen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghui Qiu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanli Wu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulei Deng
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurology, Ruijin Hospital, Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Changes in retinal microvasculature and retinal layer thickness in association with apolipoprotein E genotype in Alzheimer's disease. Sci Rep 2021; 11:1847. [PMID: 33469106 PMCID: PMC7815838 DOI: 10.1038/s41598-020-80892-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 11/19/2020] [Indexed: 11/28/2022] Open
Abstract
Biomarker tests of Alzheimer’s disease (AD) are invasive and expensive. Recent developments in optical coherence tomography (OCT) and OCT angiography (OCTA) have enabled noninvasive, cost-effective characterization of retinal layer vasculature and thickness. Using OCTA and OCT, we characterized retinal microvascular changes in the mild cognitive impairment (MCI) stage of AD and assessed their correlation with structural changes in each retinal neuronal layer. We also evaluated the effect of the APOE-ε4 genotype on retinal microvasculature and layer thickness. Retinal layer thickness did not differ between MCI patients (40 eyes) and controls (37 eyes, all p > 0.05). MCI patients had lower vessel density (VD) (p = 0.003) of the superficial capillary plexus (SCP) and larger foveal avascular zone area (p = 0.01) of the deep capillary plexus (DCP) than those of controls. VD of the SCP correlated with the ganglion cell layer (r = 0.358, p = 0.03) and inner plexiform layer thickness (r = 0.437, p = 0.007) in MCI patients. APOE-ε4-carrying MCI patients had a lower VD of the DCP than non-carriers (p = 0.03). In conclusion, retinal microvasculature was reduced in patients with AD-associated MCI, but retinal thickness was not changed; these changes might be affected by the APOE genotype. OCTA of the retinal microvasculature may be useful to detect vascular changes in AD.
Collapse
|
40
|
Song A, Johnson N, Ayala A, Thompson AC. Optical Coherence Tomography in Patients with Alzheimer's Disease: What Can It Tell Us? Eye Brain 2021; 13:1-20. [PMID: 33447120 PMCID: PMC7802785 DOI: 10.2147/eb.s235238] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Although Alzheimer's disease (AD) is a leading cause of dementia worldwide, its clinical diagnosis remains a challenge. Optical coherence tomography (OCT) and OCT with angiography (OCTA) are non-invasive ophthalmic imaging tools with the potential to detect retinal structural and microvascular changes in patients with AD, which may serve as biomarkers for the disease. In this systematic review, we evaluate whether certain OCT and OCTA parameters are significantly associated with AD and mild cognitive impairment (MCI). METHODS PubMed database was searched using a combination of MeSH terms to identify studies for review. Studies were organized by participant diagnostic groups, type of imaging modality, and OCT/OCTA parameters of interest. Participant demographic data was also collected and baseline descriptive statistics were calculated for the included studies. RESULTS Seventy-one studies were included for review, representing a total of 6757 patients (2350 AD, 793 MCI, 2902 healthy controls (HC), and 841 others with a range of other neurodegenerative diagnoses). The mean baseline ages were 72.78±3.69, 71.52±2.88, 70.55±3.85 years for AD, MCI and HC groups, respectively. The majority of studies noted significant structural and functional decline in AD patients when compared to HC. Although analysis of MCI groups yielded more mixed results, a similar pattern of decline was often noted amongst patients with MCI relative to HC. OCT and OCTA measurements were also shown to correlate with established measures of AD such as neuropsychological testing or neuroimaging. CONCLUSION OCT and OCTA show great potential as non-invasive technologies for the diagnosis of AD. However, further research is needed to determine whether there are AD-specific patterns of structural or microvascular change in the retina and optic nerve that distinguish AD from other neurodegenerative diseases. Development of sensitive and specific OCT/OCTA parameters will be necessary before they can be used to detect AD in clinical settings.
Collapse
Affiliation(s)
- Ailin Song
- Duke University School of Medicine, Durham, NC, USA
| | | | | | | |
Collapse
|
41
|
Sergott RC, Raji A, Kost J, Sur C, Jackson S, Locco A, Patel A, Furtek C, Mattson B, Egan MF. Retinal Optical Coherence Tomography Metrics Are Unchanged in Verubecestat Alzheimer's Disease Clinical Trial but Correlate with Baseline Regional Brain Atrophy. J Alzheimers Dis 2020; 79:275-287. [PMID: 33252075 DOI: 10.3233/jad-200735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND We performed exploratory analyses of retinal thickness data from a clinical trial of the AβPP cleaving enzyme (BACE) inhibitor verubecestat in patients with Alzheimer's disease (AD). OBJECTIVE To evaluate: 1) possible retinal thickness changes following BACE inhibition; and 2) possible association between retinal thickness and brain atrophy. METHODS Retinal thickness was measured using spectral-domain optical coherence tomography in a 78-week randomized placebo-controlled trial of verubecestat in 1,785 patients with mild-to-moderate AD. Changes from baseline in retinal pigment epithelium, macular grid retinal nerve fiber layer, central subfield retinal thickness, and macular grid volume were evaluated for verubecestat versus placebo. Correlation analyses were performed to investigate the potential association between macular grid retinal nerve fiber layer and central subfield retinal thickness with brain volumetric magnetic resonance imaging (vMRI) data at baseline, as well as correlations for changes from baseline at Week 78 in patients receiving placebo. RESULTS Verubecestat did not significantly alter retinal thickness during the trial compared with placebo. At baseline, mean macular grid retinal nerve fiber layer and central subfield retinal thickness were weakly but significantly correlated (Pearson's r values≤0.23, p-values < 0.01) with vMRI of several brain regions including whole brain, hippocampus, and thalamus. At Week 78, correlations between retinal thickness and brain vMRI changes from baseline in the placebo group were small and mostly not statistically significant. CONCLUSION BACE inhibition by verubecestat was not associated with adverse effects on retinal thickness in patients with mild-to-moderate AD. Correlations between retinal thickness and brain volume were observed at baseline. TRIAL REGISTRATION Clinicaltrials.gov NCT01739348 (registered December 3, 2012; https://clinicaltrials.gov/ct2/show/NCT01739348).
Collapse
Affiliation(s)
- Robert C Sergott
- Wills Eye Hospital, and Annesley Eye Brain Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | - Amy Locco
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | | | | |
Collapse
|
42
|
Zhang JR, Cao YL, Li K, Wang F, Wang YL, Wu JJ, Pei SF, Chen J, Mao CJ, Liu CF. Correlations between retinal nerve fiber layer thickness and cognitive progression in Parkinson's disease: A longitudinal study. Parkinsonism Relat Disord 2020; 82:92-97. [PMID: 33271462 DOI: 10.1016/j.parkreldis.2020.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Retinal abnormalities measured by optical coherence tomography (OCT) have been detected in both Parkinson's disease (PD) and Alzheimer's disease (AD). Cognitive impairment is not only found in AD, but 75-90% of PD patients will also develop dementia in the late stage of disease. We assessed whether baseline retinal nerve fiber layer (RNFL) thickness predicted worsening of cognitive status over time and the correlation between RNFL thickness and the detailed impaired cognitive domains in PD. METHODS RNFL thickness was measured using high-definition OCT in 78 non-dementia PD patients. Clinical and cognitive assessments were performed at baseline and at 3.61 ± 0.65 years follow-up. Linear mixed-effects models were used to examine associations between RNFL thickness and the changes in cognitive test scores, after adjusting for age, sex, disease duration and education. RESULTS Analysis of outcomes according to baseline RNFL tertiles showed worse performance in global cognitive tests, delayed memory, and executive functions in patients with a thin RNFL. During follow-up, greater cognitive deterioration was found in thin RNFL tertile patients. Lower baseline average RNFL thickness was associated with greater annualized decline in Mini-Mental State Examination and Montreal Cognitive Assessment. CONCLUSION The correlation between RNFL thickness and cognitive dysfunction suggests that OCT may be useful for predicting cognitive dysfunction in PD patients.
Collapse
Affiliation(s)
- Jin-Ru Zhang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu-Lan Cao
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Li
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ya-Li Wang
- Department of Neurology, Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China
| | - Jia-Jing Wu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shao-Fang Pei
- Department of Neurology, Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China
| | - Jing Chen
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng-Jie Mao
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
| |
Collapse
|
43
|
The Retinal Inner Plexiform Synaptic Layer Mirrors Grey Matter Thickness of Primary Visual Cortex with Increased Amyloid β Load in Early Alzheimer's Disease. Neural Plast 2020; 2020:8826087. [PMID: 33014034 PMCID: PMC7525303 DOI: 10.1155/2020/8826087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
The retina may serve as putative window into neuropathology of synaptic loss in Alzheimer's disease (AD). Here, we investigated synapse-rich layers versus layers composed by nuclei/cell bodies in an early stage of AD. In addition, we examined the associations between retinal changes and molecular and structural markers of cortical damage. We recruited 20 AD patients and 17 healthy controls (HC). Combining optical coherence tomography (OCT), magnetic resonance (MR), and positron emission tomography (PET) imaging, we measured retinal and primary visual cortex (V1) thicknesses, along with V1 amyloid β (Aβ) retention ([11C]-PiB PET tracer) and neuroinflammation ([11C]-PK11195 PET tracer). We found that V1 showed increased amyloid-binding potential, in the absence of neuroinflammation. Although thickness changes were still absent, we identified a positive association between the synapse-rich inner plexiform layer (IPL) and V1 in AD. This retinocortical interplay might reflect changes in synaptic function resulting from Aβ deposition, contributing to early visual loss.
Collapse
|
44
|
Subramanian ML, Vig V, Chung J, Fiorello MG, Xia W, Zetterberg H, Blennow K, Zetterberg M, Shareef F, Siegel NH, Ness S, Jun GR, Stein TD. Neurofilament light chain in the vitreous humor of the eye. Alzheimers Res Ther 2020; 12:111. [PMID: 32943089 PMCID: PMC7500015 DOI: 10.1186/s13195-020-00677-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neurofilament light chain (NfL) is a promising biomarker of neurodegeneration in the cerebrospinal fluid and blood. This study investigated the presence of NfL in the vitreous humor and its associations with amyloid beta, tau, inflammatory cytokines and vascular proteins, apolipoprotein E (APOE) genotypes, Mini-Mental State Examination (MMSE) scores, systemic disease, and ophthalmic diseases. METHODS This is a single-site, prospective, cross-sectional cohort study. Undiluted vitreous fluid (0.5-1.0 mL) was aspirated during vitrectomy, and whole blood was drawn for APOE genotyping. NfL, amyloid beta (Aβ), total Tau (t-Tau), phosphorylated Tau (p-Tau181), inflammatory cytokines, chemokines, and vascular proteins in the vitreous were quantitatively measured by immunoassay. The main outcome measures were the detection of NfL levels in the vitreous humor and its associations with the aforementioned proteins. Linear regression was used to test the associations of NfL with other proteins, APOE genotypes, MMSE scores, and ophthalmic and systemic diseases after adjustment for age, sex, education level, and other eye diseases. RESULTS NfL was detected in all 77 vitreous samples. NfL was not found to be associated with ophthalmic conditions, APOE genotypes, MMSE scores, or systemic disease (p > 0.05). NfL levels were positively associated with increased vitreous levels of Aβ40 (p = 7.7 × 10-5), Aβ42 (p = 2.8 × 10-4), and t-tau (p = 5.5 × 10-7), but not with p-tau181 (p = 0.53). NfL also had significant associations with inflammatory cytokines such as interleukin-15 (IL-15, p = 5.3 × 10-4), IL-16 (p = 2.2 × 10-4), monocyte chemoattractant protein-1 (MCP1, p = 4.1 × 10-4), and vascular proteins such as vascular endothelial growth factor receptor-1 (VEGFR1, p = 2.9 × 10-6), Vegf-C (p = 8.6 × 10-6), vascular cell adhesion molecule-1 (VCAM-1, p = 5.0 × 10-4), Tie-2 (p = 6.3 × 10-4), and intracellular adhesion molecular-1 (ICAM-1, p = 1.6 × 10-4). CONCLUSION NfL is detectable in the vitreous humor of the eye and significantly associated with amyloid beta, t-tau, and select inflammatory and vascular proteins in the vitreous. Additionally, NfL was not associated with patients' clinical eye condition. Our results serve as a foundation for further investigation of NfL in the ocular fluids to inform us about the potential utility of its presence in the eye.
Collapse
Affiliation(s)
- Manju L Subramanian
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA.
| | - Viha Vig
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics Section), Boston University School of Medicine, Boston, MA, USA
| | - Marissa G Fiorello
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Farah Shareef
- Department of Ophthalmology, University of Illinois at Chicago School of Medicine, Chicago, IL, USA
| | - Nicole H Siegel
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Steven Ness
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Gyungah R Jun
- Department of Medicine (Biomedical Genetics Section), Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
- Department of Veterans Affairs Medical Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
45
|
Uchida A, Pillai JA, Bermel R, Jones SE, Fernandez H, Leverenz JB, Srivastava SK, Ehlers JP. Correlation between brain volume and retinal photoreceptor outer segment volume in normal aging and neurodegenerative diseases. PLoS One 2020; 15:e0237078. [PMID: 32881874 PMCID: PMC7470418 DOI: 10.1371/journal.pone.0237078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/19/2020] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To investigate the association between outer retinal layer metrics, including photoreceptor outer segment volume, on spectral-domain optical coherence tomography (OCT) and brain volume on MRI in normal aging, Alzheimer's disease and Parkinson's disease. METHODS This was an exploratory analysis of a cross-sectional cohort study that was approved by the Cleveland Clinic Institutional Review Board to evaluate neurodegenerative disorders. Subjects aged ≥ 50 were recruited. A comprehensive neurological exam, brain MRI with volumetric evaluation, and OCT were performed for each subject. Outer retinal layer parameters, including ellipsoid zone (EZ) to retinal pigment epithelium (RPE) volume (i.e., surrogate for panmacular photoreceptor outer segment volume), were evaluated with a novel OCT analysis platform. RESULTS Of 85 subjects, 64 eyes of 64 subjects met MRI and OCT quality control criteria. Total brain volume (%ICV) significantly correlated with EZ-RPE volume in the normal cognition control group (n = 31, Pearson correlation coefficient 0.514, P < .01), the Parkinson's disease group (n = 19, Pearson correlation coefficient 0.482, P = .04), and the Alzheimer's dementia group (n = 14, Pearson correlation coefficient 0.526, P = .05). Multiple linear regression analysis revealed that photoreceptor outer segment (i.e., EZ-RPE) volume was an independent, influential factor on total brain volume in all study subjects (Coefficient 15.2, 95% confidence interval 7.8-22.6, P < .001). CONCLUSION Outer retinal parameters on OCT may serve as a novel biomarker related to brain volume. This correlation was noted in control subjects suggesting a possible developmental link between retina and brain volume. This relationship was also maintained with atrophic neurodegenerative disorders. Further research is needed to explore possible threshold differences for underlying neurodegenerative disorders.
Collapse
Affiliation(s)
- Atsuro Uchida
- The Tony and Leona Campane Center for Excellence in Image-guided Surgery and Advanced Imaging Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jagan A. Pillai
- Department of Neurology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Robert Bermel
- Department of Neurology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Mellen Center for Multiple Sclerosis, Cleveland, Ohio, United States of America
| | | | - Hubert Fernandez
- Center for Neurological Restoration, Cleveland, Ohio, United States of America
| | - James B. Leverenz
- Department of Neurology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Sunil K. Srivastava
- The Tony and Leona Campane Center for Excellence in Image-guided Surgery and Advanced Imaging Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Justis P. Ehlers
- The Tony and Leona Campane Center for Excellence in Image-guided Surgery and Advanced Imaging Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
46
|
Gupta VB, Chitranshi N, den Haan J, Mirzaei M, You Y, Lim JK, Basavarajappa D, Godinez A, Di Angelantonio S, Sachdev P, Salekdeh GH, Bouwman F, Graham S, Gupta V. Retinal changes in Alzheimer's disease- integrated prospects of imaging, functional and molecular advances. Prog Retin Eye Res 2020; 82:100899. [PMID: 32890742 DOI: 10.1016/j.preteyeres.2020.100899] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder of the brain, clinically characterised by cognitive deficits that gradually worsen over time. There is, at present, no established cure, or disease-modifying treatments for AD. As life expectancy increases globally, the number of individuals suffering from the disease is projected to increase substantially. Cumulative evidence indicates that AD neuropathological process is initiated several years, if not decades, before clinical signs are evident in patients, and diagnosis made. While several imaging, cognitive, CSF and blood-based biomarkers have been proposed for the early detection of AD; their sensitivity and specificity in the symptomatic stages is highly variable and it is difficult to justify their use in even earlier, pre-clinical stages of the disease. Research has identified potentially measurable functional, structural, metabolic and vascular changes in the retina during early stages of AD. Retina offers a distinctively accessible insight into brain pathology and current and developing ophthalmic technologies have provided us with the possibility of detecting and characterising subtle, disease-related changes. Recent human and animal model studies have further provided mechanistic insights into the biochemical pathways that are altered in the retina in disease, including amyloid and tau deposition. This information coupled with advances in molecular imaging has allowed attempts to monitor biochemical changes and protein aggregation pathology in the retina in AD. This review summarises the existing knowledge that informs our understanding of the impact of AD on the retina and highlights some of the gaps that need to be addressed. Future research will integrate molecular imaging innovation with functional and structural changes to enhance our knowledge of the AD pathophysiological mechanisms and establish the utility of monitoring retinal changes as a potential biomarker for AD.
Collapse
Affiliation(s)
- Veer B Gupta
- School of Medicine, Deakin University, VIC, Australia
| | - Nitin Chitranshi
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jurre den Haan
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Mehdi Mirzaei
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jeremiah Kh Lim
- Optometry and Vision Science, College of Nursing and Health Sciences, Bedford Park, South Australia, 5042, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Angela Godinez
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Perminder Sachdev
- Centre for Healthy Brain and Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Ghasem H Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan, Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Femke Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia.
| | - Vivek Gupta
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
47
|
Wright LM, Stein TD, Jun G, Chung J, McConnell K, Fiorello M, Siegel N, Ness S, Xia W, Turner KL, Subramanian ML. Association of Cognitive Function with Amyloid-β and Tau Proteins in the Vitreous Humor. J Alzheimers Dis 2020; 68:1429-1438. [PMID: 30856114 DOI: 10.3233/jad-181104] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The eye may serve as source for diagnostic testing for early detection of Alzheimer's disease (AD). Examination of amyloid-β (Aβ) and tau protein content in human vitreous and its correlation to neuro-cognition may improve ocular-based AD detection methods. OBJECTIVE To evaluate levels of Aβ and tau protein in human vitreous humor and investigate the clinical predictive role of these proteins as early diagnostic markers of AD. METHODS A prospective, single-center, multi-surgeon cohort study. Vitreous humor samples from 80 eyes were measured quantitatively for Aβ40-42, pTau, and tTau. Linear regression was used to test associations between AD biomarker levels, Mini-Mental State Exam (MMSE), and serum apolipoprotein E (APOE) allele status, with adjustment for age, sex, and education level of patients. RESULTS Lower MMSE scores were significantly associated with lower levels of vitreous Aβ40 (p = 0.015), Aβ42 (p = 0.0066), and tTau (p = 0.0085), and these biomarkers were not associated with any pre-existing eye conditions. Presence of the ɛ4 allele and the ɛ2 allele approached significance with reduced Aβ40 level (p = 0.053) and increased p-Tau level (p = 0.056), respectively. CONCLUSION Patients with poor cognitive function have significantly lower vitreous humor levels of AD-related biomarkers Aβ40, Aβ42, and tTau. These biomarkers do not correlate with underlying eye conditions, suggesting their specificity in association with cognitive change. This is the first study to our knowledge to correlate cognition with AD-related proteins in the vitreous humor. Results suggest ocular proteins may have a role for early dementia detection in individuals at risk for AD.
Collapse
Affiliation(s)
- Lauren M Wright
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA.,Department of Veterans Affairs Medical Center, Bedford, MA, USA.,VA Boston Healthcare System, Boston, MA, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Gyungah Jun
- Department of Genetics, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA.,Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jaeyoon Chung
- Department of Genetics, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA.,Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kate McConnell
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Marissa Fiorello
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Nicole Siegel
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Steven Ness
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Weiming Xia
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Veterans Affairs Medical Center, Bedford, MA, USA
| | - Kelley L Turner
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Manju L Subramanian
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
48
|
Ghali MGZ, Marchenko V, Yaşargil MG, Ghali GZ. Structure and function of the perivascular fluid compartment and vertebral venous plexus: Illumining a novel theory on mechanisms underlying the pathogenesis of Alzheimer's, cerebral small vessel, and neurodegenerative diseases. Neurobiol Dis 2020; 144:105022. [PMID: 32687942 DOI: 10.1016/j.nbd.2020.105022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/13/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Blood dynamically and richly supplies the cerebral tissue via microvessels invested in pia matter perforating the cerebral substance. Arteries penetrating the cerebral substance derive an investment from one or two successive layers of pia mater, luminally apposed to the pial-glial basal lamina of the microvasculature and abluminally apposed to a series of aquaporin IV-studded astrocytic end feet constituting the soi-disant glia limitans. The full investment of successive layers forms the variably continuous walls of the periarteriolar, pericapillary, and perivenular divisions of the perivascular fluid compartment. The pia matter disappears at the distal periarteriolar division of the perivascular fluid compartment. Plasma from arteriolar blood sequentially transudates into the periarteriolar division of the perivascular fluid compartment and subarachnoid cisterns in precession to trickling into the neural interstitium. Fluid from the neural interstitium successively propagates into the venules through the subarachnoid cisterns and perivenular division of the perivascular fluid compartment. Fluid fluent within the perivascular fluid compartment flows gegen the net direction of arteriovenular flow. Microvessel oscillations at the central tendency of the cerebral vasomotion generate corresponding oscillations of within the surrounding perivascular fluid compartment, interposed betwixt the abluminal surface of the vessels and internal surface of the pia mater. The precise microanatomy of this most fascinating among designable spaces has eluded the efforts of various investigators to interrogate its structure, though most authors non-consensusly concur the investing layers effectively and functionally segregate the perivascular and subarachnoid fluid compartments. Enlargement of the perivascular fluid compartment in a variety of neurological disorders, including senile dementia of the Alzheimer's type and cerebral small vessel disease, may alternately or coordinately constitute a correlative marker of disease severity and a possible cause implicated in the mechanistic pathogenesis of these conditions. Venular pressures modulating oscillatory dynamic flow within the perivascular fluid compartment may similarly contribute to the development of a variety among neurological disorders. An intimate understanding of subtle features typifying microanatomy and microphysiology of the investing structures and spaces of the cerebral microvasculature may powerfully inform mechanistic pathophysiology mediating a variety of neurovascular ischemic, neuroinfectious, neuroautoimmune, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Street, San Francisco, CA 94143, United States; Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States.
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States; Department of Neurophysiology, Bogomoletz Institute, Kyiv, Ukraine; Department of Neuroscience, Московский государственный университет имени М. В., Ломоносова GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - M Gazi Yaşargil
- Department of Neurosurgery, University Hospital Zurich Rämistrasse 100, 8091 Zurich, Switzerland
| | - George Zaki Ghali
- United States Environmental Protection Agency, Arlington, Virginia, USA; Emeritus Professor of Toxicology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
49
|
Tsokolas G, Tsaousis KT, Diakonis VF, Matsou A, Tyradellis S. Optical Coherence Tomography Angiography in Neurodegenerative Diseases: A Review. Eye Brain 2020; 12:73-87. [PMID: 32765149 PMCID: PMC7368556 DOI: 10.2147/eb.s193026] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Optical coherence tomography angiography (OCT-A) has emerged as a novel, fast, safe and non-invasive imaging technique of analyzing the retinal and choroidal microvasculature in vivo. OCT-A captures multiple sequential B-scans performed repeatedly over a specific retinal area at high speed, thus enabling the composition of a vascular map with areas of contrast change (high flow zones) and areas of steady contrast (slow or no flow zones). It therefore provides unique insight into the exact retinal or choroidal layer and location at which abnormal blood flow develops. OCTA has evolved into a useful tool for understanding a number of retinal pathologies such as diabetic retinopathy, age-related macular degeneration, central serous chorioretinopathy, vascular occlusions, macular telangiectasia and choroidal neovascular membranes of other causes. OCT-A technology is also increasingly being used in the evaluation of optic disc perfusion and has been suggested as a valuable tool in the early detection of glaucomatous damage and monitoring progression. Objective To review the existing literature on the applications of optical coherence tomography angiography in neurodegenerative diseases. Summary A meticulous literature was performed until the present day. Google Scholar, PubMed, Mendeley search engines were used for this purpose. We used 123 published manuscripts as our references. OCT-A has been utilized so far to describe abnormalities in multiple sclerosis (MS), Alzheimer’s disease, arteritic and non-arteritic optic neuropathy (AION and NAION), Leber’s hereditary optic neuropathy (LHON) papilloedema, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis (ALS), Wolfram syndrome, migraines, lesions of the visual pathway and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). It appears that OCT-A findings correlate quite well with the severity of the aforementioned diseases. However, OCT-A has its own limitations, namely its lack of wide-field view of the peripheral retina and the inaccurate interpretation due to motion artifacts in uncooperative groups of patients (e.g. children). Larger prospective longitudinal studies will need to be conducted in order to eliminate the aforementioned limitations.
Collapse
Affiliation(s)
- Georgios Tsokolas
- Ophthalmology Department, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
| | - Konstantinos T Tsaousis
- Ophthalmology Department, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
| | | | - Artemis Matsou
- Ophthalmology Department, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Straton Tyradellis
- Ophthalmology Department, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
| |
Collapse
|
50
|
Lee JY, Kim JP, Jang H, Kim J, Kang SH, Kim JS, Lee J, Jung YH, Na DL, Seo SW, Oh SY, Kim HJ. Optical coherence tomography angiography as a potential screening tool for cerebral small vessel diseases. ALZHEIMERS RESEARCH & THERAPY 2020; 12:73. [PMID: 32527301 PMCID: PMC7291486 DOI: 10.1186/s13195-020-00638-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022]
Abstract
Background The retina and the brain share anatomic, embryologic, and physiologic characteristics. Therefore, retinal imaging in patients with brain disorders has been of significant interest. Using optical coherence tomography angiography (OCTA), a novel quantitative method of measuring retinal vasculature, we aimed to evaluate radial peripapillary capillary (RPC) network density and retinal nerve fiber layer (RNFL) thickness in cognitively impaired patients and determine their association with brain imaging markers. Methods In this prospective cross-sectional study, a total of 69 patients (138 eyes) including 29 patients with amyloid-positive Alzheimer’s disease-related cognitive impairment (ADCI), 25 patients with subcortical vascular cognitive impairment (SVCI), and 15 amyloid-negative cognitively normal (CN) subjects were enrolled. After excluding eyes with an ophthalmologic disease or poor image quality, 117 eyes of 60 subjects were included in the final analyses. Retinal vascular [capillary density (CD) of the radial peripapillary capillary (RPC) network] and neurodegeneration markers [retinal nerve fiber layer (RNFL) thickness at four quadrants] were measured using OCTA and OCT imaging. Brain vascular (CSVD score) and neurodegeneration markers (cortical thickness) were assessed using 3D brain magnetic resonance imaging. The CD and RNFL thickness and their correlation with brain imaging markers were investigated. Results The SVCI group showed lower CD in the temporal quadrant of the RPC network compared to the CN group (mean (SD), 42.34 (6.29) vs 48.45 (7.08); p = 0.001). When compared to the ADCI group, the SVCI showed lower CD in the superior quadrant (mean (SD), 60.14 (6.42) vs 64.15 (6.39); p = 0. 033) as well as in the temporal quadrant (ADCI 45.76, SVCI 42.34; p = 0.048) of the RPC network. The CD was negatively correlated with CSVD score in the superior (B (95%CI), − 0.059 (− 0.097 to − 0.021); p = 0.003) and temporal (B (95%CI), − 0.048 (− 0.080 to − 0.017); p = 0.003) quadrants of the RPC network. RNFL thickness did not differ among the groups nor did it correlate with cortical thickness. Conclusions and relevance The microvasculature of the RPC network was related to the CSVD burden. However, the RNFL thickness did not reflect cerebral neurodegeneration. Noninvasive and rapid acquisition of the OCTA image might have the potential to be used as a screening tool to detect CSVD.
Collapse
Affiliation(s)
- Ju-Yeun Lee
- Department of Ophthalmology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Jaeho Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sung Hoon Kang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Sun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Jongmin Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Young Hee Jung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Sei Yeul Oh
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. .,Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Republic of Korea. .,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea. .,Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|