1
|
Seternes T, Bøgwald J, Dalmo RA. Scavenger endothelial cells of fish, a review. JOURNAL OF FISH DISEASES 2021; 44:1385-1397. [PMID: 33999444 DOI: 10.1111/jfd.13396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The definition of scavenger endothelial cells (SEC) is exclusively based on functional and structural characteristics. The following characteristics are common hallmarks for the vertebrate SEC: (a) All vertebrates examined are furnished with a population of special SEC that plays a role in the catabolism of physiologic and non-physiologic soluble waste macromolecules. (b) From the ligands that are endocytosed, SEC in all seven vertebrate classes appear to express the collagen α-chain receptor and the scavenger receptors. In addition, the hyaluronan and the mannose receptors are present on SEC of mammalia (several species) and osteichthyes (e.g., salmon and cod). It is likely that all four receptor types are present in all vertebrate classes. (c) Like liver endothelial cells (LEC) in mammals, SEC in all vertebrate classes are geared to endocytosis of soluble macromolecules, but phagocytic uptake of particles is taken care of mainly by macrophages. (d) The most primitive vertebrates (hagfish, lamprey and ray) carry their SEC in gill vessels, whereas phylogenetically younger fishes (salmon, carp, cod and plaice) carry their SEC in either kidney or heart and in all terrestrial vertebrates-SEC are found exclusively in the liver. (e) SEC of all vertebrates are localized in blood sinusoids or trabeculae that carry large amounts of slowly flowing and O2 poor blood. (f) SEC differs functionally and structurally from what is normally associated with "conventional vascular endothelium."
Collapse
Affiliation(s)
- Tore Seternes
- Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Jarl Bøgwald
- Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Roy A Dalmo
- Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Reyes-Becerril M, Ascencio-Valle F, Hirono I, Kondo H, Jirapongpairoj W, Esteban MA, Alamillo E, Angulo C. TLR21's agonists in combination with Aeromonas antigens synergistically up-regulate functional TLR21 and cytokine gene expression in yellowtail leucocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:107-115. [PMID: 26987525 DOI: 10.1016/j.dci.2016.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to characterize the TLR21 gene from yellowtail (Seriola lalandi) and its functional activity using TLR agonist stimulation and Aeromonas antigens. The TLR21 nucleotide sequence from yellowtail was obtained using the whole-genome shotgun sequencing method and bioinformatics tools. Basal TLR21 gene expression was analyzed in several tissues. Subsequently, the gene expression of TLR21 and cytokines IL-1β and TNF-α was evaluated in TLR agonist (CpG-ODN2006, LPS, and Poly I:C) exposing head kidney leucocytes, which were then subjected to Aeromonas antigen stimulation. The yellowtail full-length cDNA sequence of SlTLR21 was 3615 bp (980 aa) showing a high degree of similarity with the counterparts of other fish species and sharing the common structural architecture of the TLR family, including LRR domains, one C-terminal LRR region, and a TIR domain. Gene expression studies revealed the constitutive expression of TLR21 mRNA in all the analyzed tissues; the highest levels were observed in spleen and head kidney where they play an important role in the fish immune system. Transcripts of TLR21 and the downstream IL-1β and TNF-α cytokine genes were most strongly up-regulated after exposure to the TLR agonists following Aeromonas antigen stimulation, suggesting they are involved in immune response. The results indicated that TLR agonists, in combination with Aeromonas antigens in head kidney leucocytes, synergistically enhance TLR21 and cytokines in yellowtail.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Felipe Ascencio-Valle
- Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Walissara Jirapongpairoj
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Maria Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Erika Alamillo
- Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Carlos Angulo
- Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico.
| |
Collapse
|
3
|
Sensors of Infection: Viral Nucleic Acid PRRs in Fish. BIOLOGY 2015; 4:460-93. [PMID: 26184332 PMCID: PMC4588145 DOI: 10.3390/biology4030460] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/25/2022]
Abstract
Viruses produce nucleic acids during their replication, either during genomic replication or transcription. These nucleic acids are present in the cytoplasm or endosome of an infected cell, or in the extracellular space to be sensed by neighboring cells during lytic infections. Cells have mechanisms of sensing virus-generated nucleic acids; these nucleic acids act as flags to the cell, indicating an infection requiring defense mechanisms. The viral nucleic acids are called pathogen-associated molecular patterns (PAMPs) and the sensors that bind them are called pattern recognition receptors (PRRs). This review article focuses on the most recent findings regarding nucleic acids PRRs in fish, including: Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), cytoplasmic DNA sensors (CDSs) and class A scavenger receptors (SR-As). It also discusses what is currently known of the downstream signaling molecules for each PRR family and the resulting antiviral response, either type I interferons (IFNs) or pro-inflammatory cytokine production. The review highlights what is known but also defines what still requires elucidation in this economically important animal. Understanding innate immune systems to virus infections will aid in the development of better antiviral therapies and vaccines for the future.
Collapse
|
4
|
Poynter SJ, Weleff J, Soares AB, DeWitte-Orr SJ. Class-A scavenger receptor function and expression in the rainbow trout (Oncorhynchus mykiss) epithelial cell lines RTgutGC and RTgill-W1. FISH & SHELLFISH IMMUNOLOGY 2015; 44:138-146. [PMID: 25655333 DOI: 10.1016/j.fsi.2015.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/16/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
Class A scavenger receptors (SR-As) are cell surface receptors that bind a range of ligands, including modified low-density lipoproteins (mLDLs) and nucleic acids. Due to their ability to bind extracellular dsRNA, SR-As play an important role in the viral dsRNA initiated immune pathway. Most research on SR-As has focused on mammalian models, and there has been limited research on SR-As in fish. Thus, the presence of functional class A scavenger receptors (SR-As) were investigated in the rainbow trout cell lines, RTgutGC and RTgill-W1. SR-A ligand binding was assessed using fluorescently labeled acetylated-low density lipoprotein (acLDL) and synthetic dsRNA, polyinosinic:polycytidylic acid (poly IC), in combination with a series of known SR-A competitive ligands: fucoidan, dextran sulfate (DxSO4) and polyinosinic acid (poly I). Both cell lines were able to bind acLDL, which was blocked by SR-A competitive ligands. In RTgutGC, acLDL and poly IC competed for binding to the same surface receptor; however, in RTgill-W1 they did not. Poly IC-fluorescein binding was blocked by SR-A competitive ligands in RTgutGC but not RTgill-W1, suggesting an SR-A dependent dsRNA uptake mechanism in RTgutGC and an SR-A-independent update mechanism in RTgill-W1. Both cell lines responded to extracellular dsRNA treatment with the up-regulation of interferons (IFNs) and interferon stimulated genes (ISGs) as measured by quantitative (q)RT-PCR; however, RTgutGC expressed significantly higher transcript levels for both IFNs and ISGs compared with RTgill-W1 following extracellular poly IC treatment. Expression of SR-As, specifically a SCARA4-like sequence, was identified at the transcript level in both cell lines. These results suggest that both RTgill-W1 and RTgutGC express functional SR-As that are able to bind the classic SR-A ligand, acLDL. Although they both express SCARA4, the full SR-A expression profile; however, is likely different between the cell lines, as dsRNA uptake appears to be SR-A dependent in RTgutGC but SR-A-independent in RTgill-W1. Also, dsRNA uptake via SR-As appears to mediate a more robust antiviral response compared with a SR-A independent method of uptake. This study is the first to identify functional SR-As in rainbow trout epithelial cells, and contributes not only to a better understanding of modified LDL transport but also innate immunity in these economically important animals.
Collapse
Affiliation(s)
- Sarah J Poynter
- Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, Ontario N2L 3C5, Canada
| | - Jeremy Weleff
- Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, Ontario N2L 3C5, Canada
| | - Adam B Soares
- Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, Ontario N2L 3C5, Canada
| | - Stephanie J DeWitte-Orr
- Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, Ontario N2L 3C5, Canada.
| |
Collapse
|
5
|
Fierro-Castro C, Barrioluengo L, López-Fierro P, Razquin BE, Carracedo B, Villena AJ. Fish cell cultures as in vitro models of pro-inflammatory responses elicited by immunostimulants. FISH & SHELLFISH IMMUNOLOGY 2012; 33:389-400. [PMID: 22634253 DOI: 10.1016/j.fsi.2012.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/22/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
We have tested the elicitation of innate defence-related responses in two stromal cell lines derived from the spleen (trout splenic stroma, TSS) and the pronephros (trout pronephric stroma-2, TPS-2) of rainbow trout (Oncorhynchus mykiss) after they were exposed to different concentrations of lipopolysaccharide (LPS), levamisole, or polyinosinic polycytidylic acid (poly-I:C). For comparison, cultures of rainbow trout head kidney macrophages were also included in the study, and the effect of the immunostimulants on the phagocytic activity, the intracellular and extracellular reactive oxygen species and nitric oxide production were assayed. Although the responses varied depending upon the concentration of the immunostimulants and the particular cell line, our results demonstrate that those activities were enhanced in the TSS and TPS-2 cell lines after exposure to any of the immunostimulants. These results indicate that the stromal cells of the main lympho-haemopoietic organs of O. mykiss develop innate defence responses, which are enhanced by well-known immunostimulants. In addition, such enhancement of the defence responses in the TSS and TPS-2 cell lines could be also elicited when they were exposed to conditioned supernatants from levamisole- or poly I:C-stimulated HK macrophage cultures, thus demonstrating that the haemopoietic stromal cells respond to macrophage-derived factors. Moreover, we demonstrate that the stromal cell lines constitutively expressed the Toll-like receptors TLR3, TLR5 and TLR9 genes. The results are discussed considering the role of the lympho-haemopoietic stromal cells in the innate immune responses, and the possibility of using histiotypic cell cultures of non-leucocyte cells of the haemopoietic organs to develop in vitro methods to select new immunostimulant candidates for aquaculture.
Collapse
Affiliation(s)
- C Fierro-Castro
- Departamento de Biología Molecular (Área de Biología Celular), Facultad de Ciencias Biológicas y Ambientales, Campus de Vegazana, Universidad de León, León, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Soukup SF, Culi J, Gubb D. Uptake of the necrotic serpin in Drosophila melanogaster via the lipophorin receptor-1. PLoS Genet 2009; 5:e1000532. [PMID: 19557185 PMCID: PMC2694266 DOI: 10.1371/journal.pgen.1000532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 05/22/2009] [Indexed: 11/18/2022] Open
Abstract
The humoral response to fungal and Gram-positive infections is regulated by the serpin-family inhibitor, Necrotic. Following immune-challenge, a proteolytic cascade is activated which signals through the Toll receptor. Toll activation results in a range of antibiotic peptides being synthesised in the fat-body and exported to the haemolymph. As with mammalian serpins, Necrotic turnover in Drosophila is rapid. This serpin is synthesised in the fat-body, but its site of degradation has been unclear. By “freezing” endocytosis with a temperature sensitive Dynamin mutation, we demonstrate that Necrotic is removed from the haemolymph in two groups of giant cells: the garland and pericardial athrocytes. Necrotic uptake responds rapidly to infection, being visibly increased after 30 mins and peaking at 6–8 hours. Co-localisation of anti-Nec with anti-AP50, Rab5, and Rab7 antibodies establishes that the serpin is processed through multi-vesicular bodies and delivered to the lysosome, where it co-localises with the ubiquitin-binding protein, HRS. Nec does not co-localise with Rab11, indicating that the serpin is not re-exported from athrocytes. Instead, mutations which block late endosome/lysosome fusion (dor, hk, and car) cause accumulation of Necrotic-positive endosomes, even in the absence of infection. Knockdown of the 6 Drosophila orthologues of the mammalian LDL receptor family with dsRNA identifies LpR1 as an enhancer of the immune response. Uptake of Necrotic from the haemolymph is blocked by a chromosomal deletion of LpR1. In conclusion, we identify the cells and the receptor molecule responsible for the uptake and degradation of the Necrotic serpin in Drosophila melanogaster. The scavenging of serpin/proteinase complexes may be a critical step in the regulation of proteolytic cascades. Serpin inhibitors control a wide range of rapid physiological responses that are activated by proteolytic cascades, such as blood coagulation, inflammation, the complement pathway, and angiogenesis. They interact with their target proteinases by a “suicide inhibition” mechanism, which generates an inert, denatured, serpin/proteinase complex. In mammals, humoral serpins are secreted from the liver into the blood plasma. The denatured complex is later endocytosed back into the liver and degraded. In Drosophila, the Necrotic serpin is secreted from the fat-body into the haemolymph, where it controls the humoral immune response. We show here, however, that Necrotic is not endocytosed in the fat-body, but in the garland and pericardial athrocytes. These cells clear serpins from the haemolymph extremely rapidly. The Necrotic-binding receptor for this process is LpR1, a member of the LDLR family. The endocytosed serpin is targeted for lysosomal degradation, with none being recycled to the haemolymph. More importantly, we show that mutations in LpR1 cause a profound effect on the immune response. Thus, our results indicate that the scavenging of serpin/proteinase complexes might be a critical step in the regulation of proteolytic cascades.
Collapse
Affiliation(s)
| | - Joaquim Culi
- Centro Andaluz de Biología del Desarrollo (CSIC-UPO), Universidad Pablo de Olavide, Sevilla, Spain
| | - David Gubb
- Functional Genomics Unit, CIC bioGUNE, Derio, Spain
- * E-mail:
| |
Collapse
|
7
|
Smedsrød B, Le Couteur D, Ikejima K, Jaeschke H, Kawada N, Naito M, Knolle P, Nagy L, Senoo H, Vidal-Vanaclocha F, Yamaguchi N. Hepatic sinusoidal cells in health and disease: update from the 14th International Symposium. Liver Int 2009; 29:490-501. [PMID: 19210626 DOI: 10.1111/j.1478-3231.2009.01979.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review aims to give an update of the field of the hepatic sinusoid, supported by references to presentations given at the 14th International Symposium on Cells of the Hepatic Sinusoid (ISCHS2008), which was held in Tromsø, Norway, August 31-September 4, 2008. The subtitle of the symposium, 'Integrating basic and clinical hepatology', signified the inclusion of both basal and applied clinical results of importance in the field of liver sinusoidal physiology and pathophysiology. Of nearly 50 oral presentations, nine were invited tutorial lectures. The authors of the review have avoided writing a 'flat summary' of the presentations given at ISCHS2008, and instead focused on important novel information. The tutorial presentations have served as a particularly important basis in the preparation of this update. In this review, we have also included references to recent literature that may not have been covered by the ISCHS2008 programme. The sections of this review reflect the scientific programme of the symposium (http://www.ub.uit.no/munin/bitstream/10037/1654/1/book.pdf): 1. Liver sinusoidal endothelial cells. 2. Kupffer cells. 3. Hepatic stellate cells. 4. Immunology. 5. Tumor/metastasis. Symposium abstracts are referred to by a number preceded by the letter A.
Collapse
Affiliation(s)
- Bård Smedsrød
- Department of Cell Biology and Histology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tonheim TC, Dalmo RA, Bøgwald J, Seternes T. Specific uptake of plasmid DNA without reporter gene expression in Atlantic salmon (Salmo salar L.) kidney after intramuscular administration. FISH & SHELLFISH IMMUNOLOGY 2008; 24:90-101. [PMID: 18023591 DOI: 10.1016/j.fsi.2007.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/24/2007] [Accepted: 09/26/2007] [Indexed: 05/12/2023]
Abstract
In this study we investigated tissue distribution of pDNA after intramuscular and intravenous administration, cellular localisation, receptor-specific uptake, integrity of pDNA and transgene expression in Atlantic salmon (Salmo salar L). Anatomical distribution of plasmid DNA was determined using both radiotracing and fluorescence microscopy. Cellular uptake was studied in cultures of adherent anterior kidney leucocytes. The integrity of the pDNA in vivo was investigated by Southern blot analysis. Transcription of plasmid DNA encoded luciferase gene and protein synthesis were investigated in salmon tissues by means of real-time reverse transcription-polymerase chain reaction and enzyme activity measurements, respectively. Approximately 50% of the total recovered radioactivity was redistributed from the carcass 168h after intramuscular administration and accumulated mainly in the kidneys (37% of total). The majority of radiolabelled plasmid DNA administered intravenously was taken up within the first 15min mainly by the kidney. Intravenous co-administration of trace amounts of radiolabelled plasmid DNA with excess amounts of unlabelled plasmid DNA or formaldehyde treated albumin (a ligand for the scavenger receptors) significantly inhibited accumulation of the radiotracer in the kidney. Fluorescence microscopy demonstrated that fluorescence was localised intracellularly in cells lining the sinusoids of the kidney after intravenous administration of rhodamine-labelled plasmid DNA. Southern blot analysis demonstrated presence of supercoiled plasmid DNA in all organs and tissue samples 168h after intramuscular administration, but degradation products were only revealed at the administration site. Luciferase transcript and activity were only detectable at the administration site 24-168h after intramuscular administration of plasmid DNA. After incubation with trace amounts of radiolabelled plasmid DNA, only minor amounts of radiolabelled plasmid DNA were cell associated in cultures of adherent anterior kidney leucocytes. These results suggested that a substantial portion of radiolabelled plasmid DNA was redistributed from the carcass and was mainly cleared by a receptor-specific uptake in the kidney. Although intact plasmid DNA was detected in the kidney and other tissues, no luciferase transcripts or activity were detected in these samples at any time points investigated (24-168h), except for the administration site following intramuscular administration.
Collapse
Affiliation(s)
- Tom Christian Tonheim
- Department of Marine Biotechnology, The Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | |
Collapse
|